Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise

被引:0
|
作者
Jiling Ding
机构
[1] Jining University,Department of Mathematics
[2] Jiangnan University,School of Internet of Things Engineering
关键词
Iterative algorithm; Parameter estimation; Least squares; Multivariable system; Auxiliary model;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the parameter estimation of a multiple-input–output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-based iterative algorithm are proposed according to the auxiliary model identification idea and the iterative search principle. The simulation results indicate that the least squares-based iterative algorithm can generate more accurate parameter estimates than the auxiliary model-based recursive generalized least squares algorithm. Two examples are given to test the proposed algorithms.
引用
收藏
页码:1884 / 1906
页数:22
相关论文
共 50 条
  • [21] Data filtering based least squares iterative algorithm for parameter identification of output error autoregressive systems
    Chen, Huibo
    Zhang, Wenge
    Ding, Feng
    INFORMATION PROCESSING LETTERS, 2014, 114 (10) : 573 - 578
  • [22] Recursive and iterative least squares parameter estimation algorithms for observability canonical state space systems
    Ma, Xingyun
    Ding, Feng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (01): : 248 - 258
  • [23] Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation
    Ding, Feng
    Ma, Hao
    Pan, Jian
    Yang, Erfu
    Journal of the Franklin Institute, 2021, 358 (09) : 5113 - 5135
  • [24] Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation *
    Ding, Feng
    Ma, Hao
    Pan, Jian
    Yang, Erfu
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (09): : 5113 - 5135
  • [25] Iterative Identification Algorithms for Input Nonlinear Output Error Autoregressive Systems
    Ma, Junxia
    Xiong, Weili
    Ding, Feng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (01) : 140 - 147
  • [26] Iterative identification algorithms for input nonlinear output error autoregressive systems
    Junxia Ma
    Weili Xiong
    Feng Ding
    International Journal of Control, Automation and Systems, 2016, 14 : 140 - 147
  • [27] Multiple-input multiple-output least-squares constant modulus algorithms
    Sansrimahachai, P
    Ward, DB
    Constantinides, AG
    GLOBECOM'03: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-7, 2003, : 2084 - 2088
  • [28] Iterative and recursive least squares estimation algorithms for moving average systems
    Hu, Yuanbiao
    SIMULATION MODELLING PRACTICE AND THEORY, 2013, 34 : 12 - 19
  • [29] Auxiliary model maximum likelihood least squares-based iterative algorithm for multivariable autoregressive output-error autoregressive moving average systems
    Zhang, Qian
    Wang, Huihui
    Liu, Ximei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2025, 239 (03) : 441 - 463
  • [30] Three-stage recursive least squares parameter estimation for controlled autoregressive autoregressive systems
    Wang, Shijun
    Ding, Rui
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (12-13) : 7489 - 7497