A regression-based smoothing spline Monte Carlo algorithm for pricing American options in discrete time

被引:0
作者
Michael Kohler
机构
[1] Darmstadt University of Technology,Department of Mathematics
来源
AStA Advances in Statistical Analysis | 2008年 / 92卷
关键词
American options; Consistency; Nonparametric regression; Optimal stopping; Rate of convergence; Regression based Monte Carlo methods; Smoothing spline;
D O I
暂无
中图分类号
学科分类号
摘要
American options in discrete time can be priced by solving optimal stopping problems. This can be done by computing so-called continuation values, which we represent as regression functions defined recursively by using the continuation values of the next time step. We use Monte Carlo to generate data, and then we apply smoothing spline regression estimates to estimate the continuation values from these data. All parameters of the estimate are chosen data dependent. We present results concerning consistency and the estimates’ rate of convergence.
引用
收藏
页码:153 / 178
页数:25
相关论文
共 23 条
[1]  
Devroye L.(1982)Necessary and sufficient conditions for the almost everywhere convergence of nearest neighbor regression function estimates Z. Wahrscheinlichkeitstheor. Verw. Geb. 61 467-481
[2]  
Duchon J.(1976)Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces RAIRO. Anal. Numér. 10 5-12
[3]  
Egloff D.(2005)Monte Carlo algorithms for optimal stopping and statistical learning Ann. Appl. Probab. 15 1-37
[4]  
Egloff D.(2007)A dynamic look-ahead Monte Carlo algorithm for pricing American options Ann. Appl. Probab. 17 1138-1171
[5]  
Kohler M.(2006)Estimating market risk with neural networks Stat. Decis. 24 233-253
[6]  
Todorovic N.(2004)Number of paths versus number of basis functions in American option pricing Ann. Appl. Probab. 14 1-30
[7]  
Franke J.(2006)Nonparametric regression with additional measurement errors in the dependent variable J. Stat. Plan. Inference 136 3339-3361
[8]  
Diagne M.(2001)Nonparametric regression estimation using penalized least squares IEEE Trans. Inf. Theory 47 3054-3058
[9]  
Glasserman P.(2002)Application of structural risk minimization to multivariate smoothing spline regression estimates Bernoulli 8 475-489
[10]  
Yu B.(2001)Valuing American options by simulation: a simple least-square approach Rev. Financ. Stud. 14 113-147