Subgroups generated by rational functions in finite fields

被引:0
作者
Domingo Gómez-Pérez
Igor E. Shparlinski
机构
[1] University of Cantabria,Department of Mathematics
[2] University of New South Wales,Department of Pure Mathematics
来源
Monatshefte für Mathematik | 2015年 / 176卷
关键词
Polynomial congruences; Finite fields; Value sets of polynomials; Multiplicative subgroups; 11D79; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
For a large prime p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}, a rational function ψ∈Fp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \in {\mathbb F}_p(X)$$\end{document} over the finite field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_p$$\end{document} of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} elements, and integers u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and H≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\ge 1$$\end{document}, we obtain a lower bound on the number consecutive values ψ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x)$$\end{document}, x=u+1,…,u+H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = u+1, \ldots , u+H$$\end{document} that belong to a given multiplicative subgroup of Fp∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_p^*$$\end{document}.
引用
收藏
页码:241 / 253
页数:12
相关论文
共 50 条
  • [21] Power trace functions over finite fields
    Fitzgerald, Robert W.
    Kottegoda, Yasanthi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (10)
  • [22] Constructions of negabent functions over finite fields
    Zhou, Yue
    Qu, Longjiang
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (02): : 165 - 180
  • [23] Highly nonlinear functions over finite fields
    Schmidt, Kai-Uwe
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 63
  • [24] UNLIKELY INTERSECTIONS OVER FINITE FIELDS: POLYNOMIAL ORBITS IN SMALL SUBGROUPS
    Merai, Laszlo
    Shparlinski, Igor E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (02) : 1065 - 1073
  • [25] Algebraic curves over finite fields with many rational points
    Xing, CP
    Long, SL
    ALGEBRA COLLOQUIUM, 2004, 11 (01) : 173 - 180
  • [26] Abelian varieties over finite fields and their groups of rational points
    Marseglia, Stefano
    Springer, Caleb
    ALGEBRA & NUMBER THEORY, 2025, 19 (03) : 521 - 550
  • [27] On some properties of Costas arrays generated via finite fields
    Drakakis, Konstantinos
    Gow, Rod
    O'Carroll, Liam
    2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 801 - 805
  • [28] Primitive values of rational functions at primitive elements of a finite field
    Cohen, Stephen D.
    Sharma, Hariom
    Sharma, Rajendra
    JOURNAL OF NUMBER THEORY, 2021, 219 : 237 - 246
  • [29] Double and triple character sums and gaps between the elements of subgroups of finite fields
    Wang, Jiankang
    Xu, Zhefeng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (07) : 1725 - 1737
  • [30] On equations of finite fields of characteristic 2 and APN functions
    Nakagawa, Nobuo
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 75 - 93