首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
The cauchy problem for a higher order telegraph equation
被引:0
|
作者
:
Aleksandrovich I.M.
论文数:
0
引用数:
0
h-index:
0
Aleksandrovich I.M.
Sidorov M.V.
论文数:
0
引用数:
0
h-index:
0
Sidorov M.V.
机构
:
来源
:
Journal of Mathematical Sciences
|
2002年
/ 109卷
/ 4期
关键词
:
Cauchy Problem;
Integral Operator;
Integral Representation;
Arbitrary Function;
Telegraph Equation;
D O I
:
10.1023/A:1014377714118
中图分类号
:
学科分类号
:
摘要
:
Using the integral operator that defines a solution of the Cauchy problem for the equation Lnu = □nu + a1□n-1u + ⋯ + anu = f(x,y), we find an integral representation for solutions of the equation (□ + k)nu = f(x,y) in terms of arbitrary functions that are continuously differentiable sufficiently many times. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:1680 / 1685
页数:5
相关论文
共 50 条
[41]
On the wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order
D'Ancona, P
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Roma La Sapienza, I-00185 Rome, Italy
D'Ancona, P
Kinoshita, T
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Roma La Sapienza, I-00185 Rome, Italy
Kinoshita, T
MATHEMATISCHE NACHRICHTEN,
2005,
278
(10)
: 1147
-
1162
[42]
AN ABSTRACT CAUCHY-KOVALEVSKY PROBLEM OF HIGHER-ORDER
REISSIG, M
论文数:
0
引用数:
0
h-index:
0
机构:
Fachbereich Mathematik, Bergakademie Freiberg, Freiberg, D-9200
REISSIG, M
MATHEMATISCHE NACHRICHTEN,
1991,
150
: 25
-
39
[43]
THE GLOBAL CAUCHY PROBLEM FOR THE NLS WITH HIGHER ORDER ANISOTROPIC DISPERSION
Chaichenets, Leonid
论文数:
0
引用数:
0
h-index:
0
机构:
Karlsruhe Inst Technol, Inst Anal, Dept Math, D-76128 Karlsruhe, Germany
Karlsruhe Inst Technol, Inst Anal, Dept Math, D-76128 Karlsruhe, Germany
Chaichenets, Leonid
Pattakos, Nikolaos
论文数:
0
引用数:
0
h-index:
0
机构:
Karlsruhe Inst Technol, Inst Anal, Dept Math, D-76128 Karlsruhe, Germany
Karlsruhe Inst Technol, Inst Anal, Dept Math, D-76128 Karlsruhe, Germany
Pattakos, Nikolaos
GLASGOW MATHEMATICAL JOURNAL,
2021,
63
(01)
: 45
-
53
[44]
On uniqueness for a higher-order Cauchy problem of mathematical physics
Sever, A
论文数:
0
引用数:
0
h-index:
0
机构:
Univ N Carolina, Dept Comp Sci, Charlotte, NC 28223 USA
Univ N Carolina, Dept Comp Sci, Charlotte, NC 28223 USA
Sever, A
APPLIED MATHEMATICS AND COMPUTATION,
2002,
132
(2-3)
: 265
-
270
[45]
The Cauchy problem for an abstract second order ordinary differential equation
Gavrilov, V. S.
论文数:
0
引用数:
0
h-index:
0
机构:
State Univ Nizhny Novgorod, Natl Res Lobachevsky, Nizhnii Novgorod, Russia
State Univ Nizhny Novgorod, Natl Res Lobachevsky, Nizhnii Novgorod, Russia
Gavrilov, V. S.
SBORNIK MATHEMATICS,
2020,
211
(05)
: 643
-
688
[46]
The Cauchy problem for a fourth-order equation with the biwave operator
Korzyuk, V. I.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Acad Sci, Inst Math, Minsk, BELARUS
Natl Acad Sci, Inst Math, Minsk, BELARUS
Korzyuk, V. I.
Cheb, E. S.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Acad Sci, Inst Math, Minsk, BELARUS
Cheb, E. S.
DIFFERENTIAL EQUATIONS,
2007,
43
(05)
: 688
-
695
[47]
CAUCHY PROBLEM FOR A NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATION
FLEMING, WH
论文数:
0
引用数:
0
h-index:
0
FLEMING, WH
JOURNAL OF DIFFERENTIAL EQUATIONS,
1969,
5
(03)
: 515
-
&
[48]
The Cauchy problem for the fourth-order Schrodinger equation in Hs
Liu, Xuan
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
Liu, Xuan
Zhang, Ting
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
Zhang, Ting
JOURNAL OF MATHEMATICAL PHYSICS,
2021,
62
(07)
[49]
The cauchy problem for a fourth-order equation with the biwave operator
V. I. Korzyuk
论文数:
0
引用数:
0
h-index:
0
机构:
National Academy of Sciences,Institute of Mathematics
V. I. Korzyuk
E. S. Cheb
论文数:
0
引用数:
0
h-index:
0
机构:
National Academy of Sciences,Institute of Mathematics
E. S. Cheb
Differential Equations,
2007,
43
: 688
-
695
[50]
The Cauchy problem for a first-order quasilinear equation on a manifold
Panov, EY
论文数:
0
引用数:
0
h-index:
0
机构:
NOVGOROD STATE UNIV,NIZHNII NOVGOROD,RUSSIA
NOVGOROD STATE UNIV,NIZHNII NOVGOROD,RUSSIA
Panov, EY
DIFFERENTIAL EQUATIONS,
1997,
33
(02)
: 257
-
266
←
1
2
3
4
5
→