Algebraic varieties with automorphism groups of maximal rank

被引:0
作者
De-Qi Zhang
机构
[1] National University of Singapore,Department of Mathematics
来源
Mathematische Annalen | 2013年 / 355卷
关键词
32H50; 14J50; 32M05; 37B40;
D O I
暂无
中图分类号
学科分类号
摘要
We confirm, to some extent, the belief that a projective variety X has the largest number (relative to the dimension of X) of independent commuting automorphisms of positive entropy only when X is birational to a complex torus or a quotient of a torus. We also include an addendum to an early paper (Zhang in Adv Math 225:2332–2340, 2010) though it is not used in the present paper.
引用
收藏
页码:131 / 146
页数:15
相关论文
共 30 条
  • [1] Birkar C.(2010)Existence of minimal models for varieties of log general type J. Am. Math. Soc. 23 405-468
  • [2] Cascini P.(1999)Dynamique des automorphismes des surfaces projectives complexes C. R. Acad. Sci. Paris Sr. I Math. 328 901-906
  • [3] Hacon C.D.(2004)Groupes commutatifs d’automorphismes d’une variété kählerienne compacte Duke Math. J. 123 311-328
  • [4] McKernan J.(1978)On automorphism groups of compact Kähler manifolds Invent. Math. 44 225-258
  • [5] Cantat S.(2003)Families of rationally connected varieties J. Am. Math. Soc. 16 57-67
  • [6] Dinh T.-C.(2003)On the entropy of holomorphic maps Enseign. Math. (2) 49 217-235
  • [7] Sibony N.(2007)On Shokurov’s rational connectedness conjecture Duke Math. J. 138 119-136
  • [8] Fujiki A.(1987)On the birational automorphism groups of algebraic varieties Compos. Math. 63 123-142
  • [9] Graber T.(1980)A characterization of complex homogeneous cones Math. Z. 170 181-194
  • [10] Harris J.(2010)Intersection sheaves over normal schemes J. Math. Soc. Jpn. 62 487-595