To the theory of quasiconformal mappings

被引:0
作者
Zorich V.A. [1 ]
机构
[1] M. V. Lomonosov Moscow State University, Moscow
关键词
Beltrami equation; distorsion; isotopy; Liouville theorem; nonlinear operator; Quasiconformal mapping;
D O I
10.1007/s10958-019-04520-6
中图分类号
学科分类号
摘要
The open questions of the theory of quasiconformal mappings that are adjacent to the field of studies of Professor Bogdan Bojarski are discussed. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:860 / 864
页数:4
相关论文
共 16 条
[1]  
Ahlfors L.V., Conformality with respect to Riemanian metrics, Ann. Acad. Sci. Fenn. Ser, pp. 1-22, (1955)
[2]  
Vekua I.N., The problem of reduction of differential forms of the elliptic type to the canonical form and the generalized Cauchy–Riemann system, Dokl. Akad. Nauk SSSR, 100, 2, pp. 197-200, (1955)
[3]  
Bojarski B.V., Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR, 102, 4, pp. 661-664, (1955)
[4]  
Vekua I.N., Generalized Analytic Functions, (1962)
[5]  
Ahlfors L., Bers L., Riemann's Mapping Theorem for Variable Metrics, The Annals of Mathematics, 72, 2, (1960)
[6]  
Ahlfors L., Lectures on Quasiconformal Mappings, (1966)
[7]  
Bojarski B., Iwaniec T., Analytical foundations of the theory of quasiconformal mappings, Annales Acad. Sci. Fenn., pp. 257-324, (1982)
[8]  
Iwaniec T., Martin G., Geometric Functional Theory and Nonlinear Analysis, (2001)
[9]  
Iwaniec T., Martin G., The Beltrami Equation, (2008)
[10]  
Nevanlinna R., On differentiable mappings, Princeton Math. Ser., 90, 4, pp. 571-574, (1984)