High order elements in finite fields arising from recursive towers

被引:0
作者
Valerio Dose
Pietro Mercuri
Ankan Pal
Claudio Stirpe
机构
[1] “Sapienza” Università di Roma,Department of Computer, Control and Management Engineering (DIAG)
[2] “Sapienza” Università di Roma,Department of SBAI
[3] University of L’Aquila,Department of Mathematics
[4] Convitto Nazionale R. Margherita,undefined
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Finite field; High order elements; Recursive towers; Galois towers; 11T55; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
We illustrate a general technique to construct towers of fields producing high order elements in Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^{2^n}}$$\end{document}, for odd q, and in F22·3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{2 \cdot 3^n}}$$\end{document}, for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document}. These towers are obtained recursively by xn2+xn=v(xn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n}^2 + x_{n} = v(x_{n - 1})$$\end{document}, for odd q, or xn3+xn=v(xn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n}^3 + x_{n} = v(x_{n - 1})$$\end{document}, for q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}, where v(x) is a polynomial of small degree over the prime field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} and xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n$$\end{document} belongs to the finite field extension Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^{2^n}}$$\end{document}, for an odd q, or to F22·3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{2\cdot 3^n}}$$\end{document}. Several examples are provided to show the numerical efficacy of our method. Using the techniques of Burkhart et al. (Des Codes Cryptogr 51(3):301–314, 2009) we prove similar lower bounds on the orders of the groups generated by xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n$$\end{document}, or by the discriminant δn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _n$$\end{document} of the polynomial. We also provide a general framework which can be used to produce many different examples, with the numerical performance of our best examples being slightly better than in the cases analyzed in Burkhart et al. (2009).
引用
收藏
页码:1347 / 1368
页数:21
相关论文
共 27 条
[1]  
Ahmadi O(2010)Multiplicative order of Gauss periods Int. J. Number Theory 6 877-882
[2]  
Shparlinski IE(2009)Finite field elements of high order arising from modular curves Des. Codes Cryptogr. 51 301-314
[3]  
Voloch JF(2013)Elements of large order in prime finite fields Bull. Aust. Math. Soc. 88 169-176
[4]  
Burkhart JF(2013)Order of Gauss periods in large characteristic Taiwanese J. Math. 17 621-628
[5]  
Calkin NJ(1997)Completely normal elements in iterated quadratic extensions of finite fields Finite Fields Their Appl. 3 1-10
[6]  
Gao S(1992)The explicit construction of irreducible polynomials over finite fields Des. Codes Cryptogr. 2 169-174
[7]  
Hyde-Volpe JC(1999)Elements of provable high orders in finite fields Proc. Am. Math. Soc. 127 1615-1623
[8]  
James K(2016)Elements of high order: in Artin-Schreier extensions of finite fields Finite Fields Appl. 41 24-33
[9]  
Maharaj H(1995)Explicit n-polynomials of 2-power degree over finite fields, I Des. Codes Cryptogr. 6 107-116
[10]  
Manber S(2012)Elements of high order in finite fields of the form Finite Fields Appl. 18 700-710