Quantum gravity and the square of Bell operators

被引:0
作者
S. Aghababaei
H. Moradpour
H. Shabani
机构
[1] University of Sistan and Baluchestan,Department of Physics, Faculty of Sciences
[2] University of Maragheh,Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)
来源
Quantum Information Processing | 2022年 / 21卷
关键词
Quantum gravity; Quantum non-locality; Bell’s inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The Bell’s inequality is a strong criterion to distinguish classical and quantum mechanical aspects of reality. Its violation is the net effect of the existence of non-locality in systems, an advantage for quantum mechanics over classical physics. The quantum mechanical world is under the control of the Heisenberg uncertainty principle that is generalized by quantum gravity scenarios, called generalized uncertainty principle (GUP). Here, the effects of GUP on the square of Bell operators of qubits and qutrits are studied. The achievements claim that the violation quality of the square of Bell inequalities may be a tool to get a better understanding of the quantum features of gravity. In this regard, it is obtained that the current accuracy of the Stern–Gerlach experiments implies upper bounds on the values of the GUP parameters.
引用
收藏
相关论文
共 50 条
[41]   Newtonian quantum gravity [J].
Hansson, Johan .
PHYSICS ESSAYS, 2010, 23 (01) :53-56
[42]   Quantum description of gravity [J].
Bhuiyan, Abdul L. .
PHYSICS ESSAYS, 2015, 28 (02) :164-166
[43]   Quantum gravity with THESEUS [J].
L. Burderi ;
A. Sanna ;
T. Di Salvo ;
A. Riggio ;
R. Iaria ;
A. F. Gambino ;
A. Manca ;
A. Anitra ;
S. M. Mazzola ;
A. Marino .
Experimental Astronomy, 2021, 52 :439-452
[44]   The physics of quantum gravity [J].
Vanhove, Pierre .
COMPTES RENDUS PHYSIQUE, 2014, 15 (06) :547-552
[45]   A parametrix for quantum gravity? [J].
Esposito, Giampiero .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (05)
[46]   Newtonian quantum gravity [J].
Ziefle, Reiner Georg .
PHYSICS ESSAYS, 2020, 33 (01) :99-113
[47]   Quantum gravity on the lattice [J].
Hamber, Herbert W. .
GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (04) :817-876
[48]   Quantum gravity at the LHC [J].
Xavier Calmet ;
Priscila de Aquino .
The European Physical Journal C, 2010, 68 :305-311
[49]   Nonperturbative quantum gravity [J].
Ambjorn, J. ;
Goerlich, A. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (4-5) :127-210
[50]   A Note on Quantum Bell Nonlocality and Quantum Entanglement for High Dimensional Quantum Systems [J].
Zhang, Tinggui ;
Xi, Ya ;
Fei, Shao-Ming .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) :2909-2915