On a theorem by Sohr for the Navier-Stokes equations

被引:0
作者
Luigi C. Berselli
Renato Manfrin
机构
[1] Università degli Studi di Pisa,Dipartimento di Matematica Applicata “U.Dini”
[2] Istituto Universitario di Architettura,Dipartimento di Costruzione dell’Architettura
来源
Journal of Evolution Equations | 2004年 / 4卷
关键词
Primary 35B65; Secondary 35K55, 76D05; Navier-Stokes equations; regularity; Marcinkiewicz spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study some criteria for the full (space-time) regularity of weak solutions to the Navier-Stokes equations. In particular, we generalize some classical and very recent criteria involving the velocity, or its derivatives. More specifically, we show with elementary tools that if a weak solution, or its vorticity, is small in appropriate Marcinkiewicz spaces, then it is regular.
引用
收藏
页码:193 / 211
页数:18
相关论文
共 50 条
[41]   On decay of solutions to the Navier-Stokes equations [J].
Schonbek, ME .
APPLIED NONLINEAR ANALYSIS, 1999, :505-512
[42]   Analyticity estimates for the Navier-Stokes equations [J].
Herbst, I. ;
Skibsted, E. .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :1990-2033
[43]   Analytical solutions to the Navier-Stokes equations [J].
Yuen, Manwai .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (11)
[44]   Existence and properties of the Navier-Stokes equations [J].
Zhirkin, A. V. .
COGENT MATHEMATICS, 2016, 3
[45]   RESONANCE AND GENERALIZED NAVIER-STOKES EQUATIONS [J].
HE Cheng(Institute of Applied Mathematics .
SystemsScienceandMathematicalSciences, 2000, (03) :250-259
[46]   REGULARITY FOR THE AXISYMMETRIC NAVIER-STOKES EQUATIONS [J].
Wang, Peng .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
[47]   Numerical study of Navier-Stokes equations [J].
Algazin, S. D. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2007, 48 (05) :656-663
[48]   Numerical study of Navier-Stokes equations [J].
S. D. Algazin .
Journal of Applied Mechanics and Technical Physics, 2007, 48 :656-663
[49]   The natural solvability of the Navier-Stokes equations [J].
Akysh , A. Sh .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 92 (04) :8-14
[50]   On Critical Spaces for the Navier-Stokes Equations [J].
Pruess, Jan ;
Wilke, Mathias .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) :733-755