Resummation-based quantum Monte Carlo vis-à-vis sign-problematic S=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\frac{1}{2}$$\end{document} Heisenberg models on canonical geometrically frustrated lattices

被引:0
作者
Nisheeta Desai
Sumiran Pujari
机构
[1] Tata Institute of Fundamental Research,Department of Theoretical Physics
[2] Indian Institute of Technology Bombay,Department of Physics
关键词
Quantum Monte Carlo; stochastic series expansion; resummation-based updates; Heisenberg models; 70; 70.71; 70.73; 70.75;
D O I
10.1007/s12043-023-02586-1
中图分类号
学科分类号
摘要
We show here that a direct application of resummation-based quantum Monte Carlo (QMC) — implemented recently for sign-problem-free SU(2)-symmetric spin Hamiltonians in the stochastic series expansion (SSE) framework — does not reduce the sign problem for frustrated SU(2)-symmetric S=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\frac{1}{2}$$\end{document} Heisenberg antiferromagnets on canonical geometrically frustrated lattices composed of triangular motifs such as the triangular lattice. In the process, we demonstrate that resummation-based updates do provide an ergodic sampling of the SSE-based QMC configurations which can be an issue when using the standard SSE updates, however, severely limited by the sign problem as previously mentioned. The notions laid out in these notes may be useful in the design of better algorithms for geometrically frustrated magnets.
引用
收藏
相关论文
共 6 条
[1]  
Desai N(2021)Resummation-based quantum monte carlo for quantum paramagnetic phases Phys. Rev. B 104 L060406-undefined
[2]  
Pujari S(1999)Meron-cluster solution of fermion sign problems Phys. Rev. Lett. 83 3116-undefined
[3]  
Chandrasekharan S(2000)Sign problem in Monte Carlo simulations of frustrated quantum spin systems Phys. Rev. B 62 1102-undefined
[4]  
Wiese U-J(undefined)undefined undefined undefined undefined-undefined
[5]  
Henelius P(undefined)undefined undefined undefined undefined-undefined
[6]  
Sandvik AW(undefined)undefined undefined undefined undefined-undefined