Universal Iterative Methods for Computing Generalized Inverses

被引:0
作者
D. S. Djordjević
P. S. Stanimirović
机构
[1] University of Niś,Faculty of Philosophy Department of Mathematics Ćirila 1 Metodija 2
来源
Acta Mathematica Hungarica | 1998年 / 79卷
关键词
Error Estimate; Iterative Method; Iterative Process; Suitable Condition; Generalize Inverse;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we construct a few iterative processes for computing {1,2} inverses of a linear bounded operator, based on the hyper-power iterative method or the Neumann-type expansion. Under suitable conditions these methods converge to the {1,2,3} or {1,2,4} inverses. Also, we specify conditions when the iterative processes converge to the Moore-Penrose inverse, the weighted Moore-Penrose inverse or to the group inverse. A few error estimates are derived. The advantages of the introduced methods over Tanabe's method [16] for computing reflexive generalized inverses are also investigated.
引用
收藏
页码:253 / 268
页数:15
相关论文
共 19 条
[1]  
Altman M.(1960)An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space Pacific J. Math. 10 1107-113
[2]  
Arghiriade E.(1967)Remarques sur l'inverse generalise d'un produit de matrices Lincei. Rend. Sc. fis. mat. e nat. XLII 621-625
[3]  
Bouldin R. H.(1973)The pseudoinverse of a product SIAM J. Appl. Math. 24 489-495
[4]  
Cline R. E.(1968)Inverses of rank invariant powers of a matrix SIAM J. Numer. Anal. 5 182-197
[5]  
Garnett J.(1971)A hyperpower iterative method for computing matrix products involving the generalized inverse SIAM J. Numer. Anal. 8 104-109
[6]  
Ben-Israel A.(1990)Using error-bounds hyperpower methods to calculate inclusions for the inverse of a matrix BIT 30 508-515
[7]  
Yau S. S.(1955)A generalized inverse for matrices Proc. Cambridge Philos. Soc. 51 406-413
[8]  
Herzberger J.(1965)On the inversion of matrices and linear operators Proc. Amer. Math. Soc. 16 893-901
[9]  
Penrose R.(1967)On generalized inverses and on the uniform convergence of ( J. Math. Anal. Appl. 18 417-439
[10]  
Petryshyn W. V.(1966)) Glasnik Matematički 1 23-37