Prime Producing Quadratic Polynomials and Class Number One or Two

被引:0
|
作者
Anitha Srinivasan
机构
[1] Universidad de Puerto-Rico,Departamento de Matematicas
[2] Indian Institute of Technology,Department of Mathematics
来源
The Ramanujan Journal | 2005年 / 10卷
关键词
class number; binary quadratic forms; quadratic field; prime producing polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
Let d≡ 5 mod 8 be a positive square-free integer and let h(d) be the class number of the real quadratic field ℚ(√d). Let p be a divisor of d = pq and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_p(x)=\vert p{x}^{2} + px + \frac{p-q}{4}\vert$$\end{document}. Assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_p(x)$$\end{document} is prime or equal to 1 for all integers x with 0≤x<W. Under the assumption that the Riemann hypothesis is true, we prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W=\frac{1}{2}(\sqrt{\frac{d}{5}}-1)$$\end{document}, then h(d) < 2. Furthermore we show that h(d)< 2 implies d < 4245. In the case when there exists at least one split prime less than W, we prove the following results without any assumptions on the Riemann hypothesis. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W=\frac{\sqrt{d}}{4}-\frac{1}{2}$$\end{document} then h< 2 or h = 4. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W=\frac{1}{2}(\sqrt{\frac{d}{5}}-1)$$\end{document}, then h≤ 2, h = 4 or h = 2t−2, where t is the number of primes dividing d. In the case when h = 2t−2 we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=p^{2}\phi^{2}\pm p$$\end{document}, where φ = 2 or 4.
引用
收藏
页码:5 / 22
页数:17
相关论文
共 50 条