Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields

被引:0
作者
Kangquan Li
Longjiang Qu
Qiang Wang
机构
[1] National University of Defense Technology,College of Science
[2] Carleton University,School of Mathematics and Statistics
来源
Cryptography and Communications | 2019年 / 11卷
关键词
Finite fields; Permutation polynomials; Compositional inverses; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
The study of computing compositional inverses of permutation polynomials over finite fields efficiently is motivated by an open problem proposed by G. L. Mullen (1991), as well as the potential applications of these permutation polynomials (Dillon 1974, Khachatrian and Kyureghyan, Discrete Appl. Math. 216, 622–626 2017, Lidl 1985, Lidl and Müller 1984, Rivest et al., ACM Commun. Comput. Algebra. 1978, 120–126 1976, Schwenk and Huber, Electron. Lett. 34, 759–760 1998). It is well known that every permutation polynomial over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document} can be reduced to a permutation polynomial of the form xrh(xs) with s∣(q − 1) and h(x)∈Fq[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(x) \in \mathbb {F}_{q}[x]$\end{document} (Akbary et al., Finite Fields Appl. 15(2), 195–206 2009, Wang, Finite Fields Appl. 22, 57–69 2013). Recently, several explicit classes of permutation polynomials of the form xrh(xs) over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb F}_{q}$\end{document} have been constructed. However, all the known methods to compute the compositional inverses of permutation polynomials of this form seem to be inadequately explicit, which could be a hurdle to potential applications. In this paper, for any prime power q, we introduce a new approach to explicitly compute the compositional inverse of a permutation polynomial of the form xrh(xs) over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb F}_{q}$\end{document}, where s∣(q − 1) and gcd(r,q−1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gcd (r,q-1)= 1$\end{document}. The main idea relies on transforming the problem of computing the compositional inverses of permutation polynomials over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb F}_{q}$\end{document} into computing the compositional inverses of two restricted permutation mappings, where one of them is a monomial over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document} and the other is the polynomial xrh(x)s over a particular subgroup of Fq∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{*}$\end{document} with order (q − 1)/s. This is a multiplicative analog of Tuxanidy and Wang (Finite Fields Appl. 28, 244–281 2014), Wu and Liu (Finite Fields Appl. 24, 136–147 2013). We demonstrate that the inverses of these two restricted permutations can be explicitly obtained in many cases. As consequences, many explicit compositional inverses of permutation polynomials given in Zieve (Proc. Am. Math. Soc. 137, 2209–2216 2009), Zieve (arXiv:1310.0776, 2013), Zieve (arXiv:1312.1325v3, 2013) are obtained using this method.
引用
收藏
页码:279 / 298
页数:19
相关论文
共 54 条
[1]  
Akbary A(2009)On permutation polynomials of prescribed shape Finite Fields Appl. 15 195-206
[2]  
Ghioca D(2011)On constructing permutations of finite fields Finite Fields Appl. 17 51-67
[3]  
Wang Q(2016)Involutions over the Galois field ${F}_{2^{n}}$F2n IEEE Trans. Inform. Theory. 62 2266-2276
[4]  
Akbary A(2002)The compositional inverse of a class of permutation polynomials over a finite field Bull. Aust. Math. Soc. 65 521-526
[5]  
Ghioca D(2015)Permutation polynomials over finite fields — a survey of recent advances Finite Fields Appl. 32 82-119
[6]  
Wang Q(2017)Permutation polynomials and a new public-key encryption Discrete Appl. Math. 216 622-626
[7]  
Charpin P(2017)New classes of permutation binomials and permutation trinomials over finite fields Finite Fields Appl. 43 69-85
[8]  
Mesnager S(2018)Permutation polynomials of the form $cx+ \text {Tr}_{q^{l}/q}\left (x^{a}\right )$cx+Trql/qxa and permutation trinomials over finite fields with even characteristic Cryptogr. Commun. 10 531-554
[9]  
Sarkar S(2017)Several classes of permutation trinomials from Niho exponents Cryptogr. Commun. 9 693-705
[10]  
Coulter RS(2007)A note on the coefficients of inverse polynomials Finite Fields Appl. 13 977-980