Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
|
作者
Fan Wang
Dachun Yang
Sibei Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
Results in Mathematics | 2020年 / 75卷
关键词
Ball quasi-Banach function space; Hardy space; -function; -function; atom; Calderón–Zygmund operator; pseudo-differential operator; Primary 42B30; Secondary 42B35; 42B25; 42B20; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some minor assumptions. In this article, the authors establish the characterizations of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, the Hardy space associated with X, via the Littlewood–Paley g-functions and gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\lambda ^*$$\end{document}-functions. Moreover, the authors obtain the boundedness of Calderón–Zygmund operators on HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. For the local Hardy-type space hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} associated with X, the authors also obtain the boundedness of S1,00(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^0_{1,0}(\mathbb {R}^n)$$\end{document} pseudo-differential operators on hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} via first establishing the atomic characterization of hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document}. Furthermore, the characterizations of hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} by means of local molecules and local Littlewood–Paley functions are also given. The results obtained in this article have a wide range of generality and can be applied to the classical Hardy space, the weighted Hardy space, the Herz–Hardy space, the Lorentz–Hardy space, the Morrey–Hardy space, the variable Hardy space, the Orlicz-slice Hardy space and their local versions. Some special cases of these applications are even new and, particularly, in the case of the variable Hardy space, the gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\lambda ^*$$\end{document}-function characterization obtained in this article improves the known results via widening the range of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Hardy spaces associated to generalized Hardy operators and applications
    The Anh Bui
    Georges Nader
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [42] Bloch, Hardy, and BMOA spaces in the ball
    Dubtsov E.S.
    Journal of Mathematical Sciences, 2006, 139 (2) : 6403 - 6405
  • [43] Hardy spaces with variable exponents on RD-spaces and applications
    Zhuo, Ciqiang
    Sawano, Yoshihiro
    Yang, Dachun
    DISSERTATIONES MATHEMATICAE, 2016, (520) : 1 - 74
  • [44] Anisotropic ball Campanato-type function spaces and their applications
    Li, Chaoan
    Yan, Xianjie
    Yang, Dachun
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)
  • [45] Anisotropic ball Campanato-type function spaces and their applications
    Chaoan Li
    Xianjie Yan
    Dachun Yang
    Analysis and Mathematical Physics, 2023, 13
  • [46] Musielak–Orlicz–Hardy Spaces Associated with Operators and Their Applications
    Dachun Yang
    Sibei Yang
    Journal of Geometric Analysis, 2014, 24 : 495 - 570
  • [47] Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications
    The Anh Bui
    Xuan Thinh Duong
    Fu Ken Ly
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (08)
  • [48] Mixed-norm Herz spaces and their applications in related Hardy spaces
    Zhao, Yirui
    Yang, Dachun
    Zhang, Yangyang
    ANALYSIS AND APPLICATIONS, 2023, 21 (05) : 1131 - 1222
  • [49] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Yanchang Han
    Yongsheng Han
    Ji Li
    Chaoqiang Tan
    Potential Analysis, 2018, 49 : 247 - 265
  • [50] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Han, Yanchang
    Han, Yongsheng
    Li, Ji
    Tan, Chaoqiang
    POTENTIAL ANALYSIS, 2018, 49 (02) : 247 - 265