Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
|
作者
Fan Wang
Dachun Yang
Sibei Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
Results in Mathematics | 2020年 / 75卷
关键词
Ball quasi-Banach function space; Hardy space; -function; -function; atom; Calderón–Zygmund operator; pseudo-differential operator; Primary 42B30; Secondary 42B35; 42B25; 42B20; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some minor assumptions. In this article, the authors establish the characterizations of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, the Hardy space associated with X, via the Littlewood–Paley g-functions and gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\lambda ^*$$\end{document}-functions. Moreover, the authors obtain the boundedness of Calderón–Zygmund operators on HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. For the local Hardy-type space hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} associated with X, the authors also obtain the boundedness of S1,00(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^0_{1,0}(\mathbb {R}^n)$$\end{document} pseudo-differential operators on hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} via first establishing the atomic characterization of hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document}. Furthermore, the characterizations of hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} by means of local molecules and local Littlewood–Paley functions are also given. The results obtained in this article have a wide range of generality and can be applied to the classical Hardy space, the weighted Hardy space, the Herz–Hardy space, the Lorentz–Hardy space, the Morrey–Hardy space, the variable Hardy space, the Orlicz-slice Hardy space and their local versions. Some special cases of these applications are even new and, particularly, in the case of the variable Hardy space, the gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\lambda ^*$$\end{document}-function characterization obtained in this article improves the known results via widening the range of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderon-Zygmund Operators
    Sun, Jingsong
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [22] Molecular characterization of weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type with its applications to Litttewood-Paley function characterizations
    Sun, Jingsong
    Yang, Dachun
    Yuan, Wen
    FORUM MATHEMATICUM, 2022, 34 (06) : 1539 - 1589
  • [23] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators
    Yangyang Zhang
    Dachun Yang
    Wen Yuan
    Songbai Wang
    Science China Mathematics, 2021, 64 : 2007 - 2064
  • [24] Uniqueness of unconditional bases in quasi-banach spaces with applications to hardy spaces, II
    P. Wojtaszczyk
    Israel Journal of Mathematics, 1997, 97 : 253 - 280
  • [25] Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces In Memory of Professor Carlos Berenstein
    Chang, Der-Chen
    Wang, Songbai
    Yang, Dachun
    Zhang, Yangyang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (03)
  • [26] MARTINGALE HARDY SPACES BASED ON QUASI-BANACH FUNCTION LATTICES
    Sawano, Yoshihiro
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 259 - 273
  • [27] Gagliardo representation of norms of ball quasi-Banach function spaces
    Pan, Zhulei
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
  • [28] Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood–Paley Characterizations and Real Interpolation
    Songbai Wang
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    The Journal of Geometric Analysis, 2021, 31 : 631 - 696
  • [29] Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood-Paley Characterizations and Real Interpolation
    Wang, Songbai
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 631 - 696
  • [30] Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) : 484 - 514