Distinct r-tuples in integer partitions

被引:0
|
作者
Margaret Archibald
Aubrey Blecher
Arnold Knopfmacher
机构
[1] University of the Witwatersrand,The John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics
来源
The Ramanujan Journal | 2019年 / 50卷
关键词
Generating function; Integer partitions; -tuples; Primary: 05A16; 05A17; Secondary: 05A15;
D O I
暂无
中图分类号
学科分类号
摘要
We define Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} to be the generating function which counts the total number of distinct (sequential) r-tuples in partitions of n and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} and r=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=3$$\end{document}. Then we use these methods to obtain Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} in the case of general r-tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. Finally we show that as r→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow \infty $$\end{document}, q-rPr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{-r}P_{r}(q)$$\end{document} converges to an explicitly determined power series.
引用
收藏
页码:237 / 252
页数:15
相关论文
共 50 条
  • [1] Distinct r-tuples in integer partitions
    Archibald, Margaret
    Blecher, Aubrey
    Knopfmacher, Arnold
    RAMANUJAN JOURNAL, 2019, 50 (02) : 237 - 252
  • [2] Notes on integer partitions
    Ganter, Bernhard
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 142 : 31 - 40
  • [3] A New Approach to Integer Partitions
    J. P. O. Santos
    M. L. Matte
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 811 - 847
  • [4] An expansion for the number of partitions of an integer
    Stella Brassesco
    Arnaud Meyroneinc
    The Ramanujan Journal, 2020, 51 : 563 - 592
  • [5] On the Distribution of Multiplicities in Integer Partitions
    Dimbinaina Ralaivaosaona
    Annals of Combinatorics, 2012, 16 : 871 - 889
  • [6] Stirling numbers and integer partitions
    Merca, Mircea
    QUAESTIONES MATHEMATICAE, 2016, 39 (04) : 457 - 469
  • [7] A New Approach to Integer Partitions
    Santos, J. P. O.
    Matte, M. L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (04): : 811 - 847
  • [8] On the Distribution of Multiplicities in Integer Partitions
    Ralaivaosaona, Dimbinaina
    ANNALS OF COMBINATORICS, 2012, 16 (04) : 871 - 889
  • [9] Composite fermions and integer partitions
    Benjamin, AT
    Quinn, JJ
    Quinn, JJ
    Wójs, A
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 95 (02) : 390 - 397
  • [10] Integer partitions probability distributions
    Sills, Andrew V.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (15) : 3556 - 3563