Multiplicative Chow–Künneth decompositions and varieties of cohomological K3 type

被引:0
作者
Lie Fu
Robert Laterveer
Charles Vial
机构
[1] Université Claude Bernard Lyon 1,Institut Camille Jordan
[2] Radboud University,IMAPP
[3] Université de Strasbourg,CNRS–IRMA
[4] Universität Bielefeld,Fakultät für Mathematik
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2021年 / 200卷
关键词
Algebraic cycles; Chow groups; Motives; K3 surfaces; Cubic hypersurfaces; Fano varieties of lines; Franchetta conjecture; Hyper-Kähler varieties; Beauville “splitting property” conjecture; Multiplicative Chow–Künneth decomposition; 14C15; 14C25; 14C30; 14J45; 14J42;
D O I
暂无
中图分类号
学科分类号
摘要
Given a smooth projective variety, a Chow–Künneth decomposition is called multiplicative if it is compatible with the intersection product. Following works of Beauville and Voisin, Shen and Vial conjectured that hyper-Kähler varieties admit a multiplicative Chow–Künneth decomposition. In this paper, based on the mysterious link between Fano varieties with cohomology of K3 type and hyper-Kähler varieties, we ask whether Fano varieties with cohomology of K3 type also admit a multiplicative Chow–Künneth decomposition, and provide evidence by establishing their existence for cubic fourfolds and Küchle fourfolds of type c7. The main input in the cubic hypersurface case is the Franchetta property for the square of the Fano variety of lines; this was established in our earlier work in the fourfold case and is generalized here to arbitrary dimension. On the other end of the spectrum, we also give evidence that varieties with ample canonical class and with cohomology of K3 type might admit a multiplicative Chow–Künneth decomposition, by establishing this for two families of Todorov surfaces.
引用
收藏
页码:2085 / 2126
页数:41
相关论文
共 73 条
[1]  
Beauville A(1986)Sur l’anneau de Chow d’une variété abélienne Math. Ann. 273 647-651
[2]  
Beauville A(2004)On the Chow ring of a K3 surface J. Alg. Geom. 13 417-426
[3]  
Voisin C(2019)Tautological classes on moduli spaces of hyper-Kähler manifolds Duke Math. J. 168 1179-1230
[4]  
Bergeron N(1983)Remarks on correspondences and algebraic cycles Am. J. Math. 105 1235-1253
[5]  
Li Z(1989)Surfaces with J. Reine U. Angew. Math. 395 1-55
[6]  
Bloch S(1983), Ann. Math. (2) 117 285-291
[7]  
Srinivas V(2010), J. Reine Angew. Math. 649 63-87
[8]  
Catanese F(1991) is not algebraically equivalent to J. Reine Angew. Math. 422 201-219
[9]  
Debarre O(2013) in its Jacobian Adv. Math. 244 894-924
[10]  
Ceresa G(2020)Hyper-Kähler fourfolds and Grassmann geometry J. Algebr. Geom. 29 53-107