Scaled Limit and Rate of Convergence for the Largest Eigenvalue from the Generalized Cauchy Random Matrix Ensemble

被引:0
作者
Joseph Najnudel
Ashkan Nikeghbali
Felix Rubin
机构
[1] Universität Zürich,Institut für Mathematik
来源
Journal of Statistical Physics | 2009年 / 137卷
关键词
Random matrices; Generalized Cauchy Ensemble; Painlevé equations; Determinantal processes; Limit theorems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the asymptotic properties for the largest eigenvalue of the Hermitian random matrix ensemble, called the Generalized Cauchy ensemble GCyE, whose eigenvalues PDF is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{const}\cdot\prod_{1\leq j<k\leq N}(x_j-x_k)^2\prod_{j=1}^N(1+ix_j)^{-s-N}(1-ix_j)^{-\overline{s}-N}dx_j,$$\end{document} where s is a complex number such that ℜ(s)>−1/2 and where N is the size of the matrix ensemble. Using results by Borodin and Olshanski (Commun. Math. Phys., 223(1):87–123, 2001), we first prove that for this ensemble, the law of the largest eigenvalue divided by N converges to some probability distribution for all s such that ℜ(s)>−1/2. Using results by Forrester and Witte (Nagoya Math. J., 174:29–114, 2002) on the distribution of the largest eigenvalue for fixed N, we also express the limiting probability distribution in terms of some non-linear second order differential equation. Eventually, we show that the convergence of the probability distribution function of the re-scaled largest eigenvalue to the limiting one is at least of order (1/N).
引用
收藏
相关论文
共 41 条
[1]  
Adler M.(2000)Classical skew orthogonal polynomials and random matrices J. Stat. Phys. 99 141-170
[2]  
Forrester P.(2002)Fredholm determinants, Jimbo-Miwa-Ueno- Commun. Pure Appl. Math. 55 1160-1230
[3]  
Nagao T.(2001)-functions, and representation theory Commun. Math. Phys. 223 87-123
[4]  
van Moerbeke P.(1993)Infinite random matrices and Ergodic measures Stud. Appl. Math. 88 25-87
[5]  
Borodin A.(2006)Painlevé classification of a class of differential equations of the second order and second degree Ann. Probab. 34 2077-2117
[6]  
Deift P.(2002)A rate of convergence result for the largest eigenvalue of complex white Wishart matrices Nagoya Math. J. 174 29-114
[7]  
Borodin A.(2006)Application of the J. Phys. A, Math. Gen. 39 12211-12233
[8]  
Olshanski G.(2005)-function theory of Painlevé equations to random matrices: J. Math. Phys. 46 103301-158
[9]  
Cosgrove C.M.(1980), the JUE, CyUE, cJUE and scaled limits Physica D 1 80-327
[10]  
Scoufis G.(2001)Random matrix theory and the sixth Painlevé equation Ann. Math. Stat. 29 295-1108