Generalised Kostka–Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles

被引:0
作者
Dmitri I. Panyushev
机构
[1] Independent University of Moscow,
[2] Institute for Information Transmission Problems,undefined
来源
Selecta Mathematica | 2010年 / 16卷
关键词
Semisimple Lie algebra; Weight multiplicity; -analogue; Hall–Littlewood polynomials; 17B10; 14M17; 20G05; 14F17;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple algebraic group and B a Borel subgroup. We consider generalisations of Lusztig’s q-analogues of weight multiplicity, where the set of positive roots is replaced with the multiset of weights of a B-submodule N of an arbitrary finite-dimensional G-module V. The corresponding polynomials in q are called generalised Kostka–Foulkes polynomials (gKF). We prove vanishing theorems for the cohomology of line bundles on G × BN and derive from this a sufficient condition for the non-negativity of the coefficients of gKF. We also consider in detail the case in which V is the simple G-module whose highest weight is the short dominant root and N is the B-submodule whose weights are all short positive roots.
引用
收藏
页码:315 / 342
页数:27
相关论文
共 22 条
[11]  
Letzter G.(1982)Characters of the nullcone Invent. Math. 66 461-468
[12]  
Zelikson S.(1976)On the Brylinski–Kostant filtration Invent. Math. 37 229-239
[13]  
Kato S.(1963)Spherical functions and a Am. J. Math. 85 327-404
[14]  
Kempf G.(2000)-analogue of Kostant’s weight multiplicity formula Duke Math. J. 102 187-191
[15]  
Kostant B.(1972)On the collapsing of homogeneous vector bundles Math. Ann. 199 161-174
[16]  
Kovács S.(2001)Lie group representations on polynomial rings Transform. Groups 6 371-396
[17]  
Macdonald I.(2006)A characterization of rational singularities Eur. J. Comb. 27 153-178
[18]  
Panyushev D.(2007)The Poincaré series of a Coxeter group Semin. Lothar. Comb. 58 20-448
[19]  
Panyushev D.(2000)The exterior algebra and “spin” of an orthogonal Can. J. Math. 52 438-undefined
[20]  
Viswanath S.(undefined) -module undefined undefined undefined-undefined