Generalised Kostka–Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles

被引:0
作者
Dmitri I. Panyushev
机构
[1] Independent University of Moscow,
[2] Institute for Information Transmission Problems,undefined
来源
Selecta Mathematica | 2010年 / 16卷
关键词
Semisimple Lie algebra; Weight multiplicity; -analogue; Hall–Littlewood polynomials; 17B10; 14M17; 20G05; 14F17;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple algebraic group and B a Borel subgroup. We consider generalisations of Lusztig’s q-analogues of weight multiplicity, where the set of positive roots is replaced with the multiset of weights of a B-submodule N of an arbitrary finite-dimensional G-module V. The corresponding polynomials in q are called generalised Kostka–Foulkes polynomials (gKF). We prove vanishing theorems for the cohomology of line bundles on G × BN and derive from this a sufficient condition for the non-negativity of the coefficients of gKF. We also consider in detail the case in which V is the simple G-module whose highest weight is the short dominant root and N is the B-submodule whose weights are all short positive roots.
引用
收藏
页码:315 / 342
页数:27
相关论文
共 22 条
[1]  
Broer A.(1993)Line bundles on the cotangent bundle of the flag variety Invent. Math. 113 1-20
[2]  
Broer A.(1995)The sum of generalized exponents and Chevalley’s restriction theorem Indag. Math. 6 385-396
[3]  
Broer A.(1997)A vanishing theorem for Dolbeault cohomology of homogeneous vector bundles J. Reine Angew. Math. 493 153-169
[4]  
Brylinski R.K.(1989)Limits of weight spaces, Lusztig’s J. Am. Math. Soc. 2 517-533
[5]  
Gupta R.K.(1987)-analogs, and fiberings of adjoint orbits J. Lond. Math. Soc. 36 68-76
[6]  
Gupta R.K.(1987)Characters and the Bull. Am. Math. Soc. 16 287-291
[7]  
Heckman G.(1982)-analog of weight multiplicity Invent. Math. 67 333-356
[8]  
Hesselink W.(1976)Generalized exponents via Hall–Littlewood symmetric functions Math. Ann. 223 249-252
[9]  
Hesselink W.(1980)Projections of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups Math. Ann. 252 179-182
[10]  
Joseph A.(2000)Cohomology and the resolution of the nilpotent variety J. Am. Math. Soc. 13 945-970