Inverse subsemigroups of finite index in finitely generated inverse semigroups

被引:0
作者
Amal AlAli
N. D. Gilbert
机构
[1] Princess Nourah bint Abdulrahman University,Mathematics Department
[2] Heriot-Watt University,School of Mathematical and Computer Sciences, Maxwell Institute for the Mathematical Sciences
来源
Semigroup Forum | 2018年 / 96卷
关键词
Inverse semigroup; Coset; Index;
D O I
暂无
中图分类号
学科分类号
摘要
We study some aspects of Schein’s theory of cosets for closed inverse subsemigroups of inverse semigroups. We establish an index formula for chains of subsemigroups, and an analogue of M. Hall’s Theorem on the number of cosets of a fixed finite index. We then investigate the relationships between the following properties of a closed inverse submonoid of an inverse monoid: having finite index; being a recognizable subset; being a rational subset; being finitely generated (as a closed inverse submonoid). A remarkable result of Margolis and Meakin shows that these properties are equivalent for a closed inverse submonoid of a free inverse monoid.
引用
收藏
页码:489 / 505
页数:16
相关论文
共 14 条
  • [1] Anisimov AV(1975)Zur algebraischen characteristik dur durch kontextfreie Sprachen definierten Gruppen Elektron. Informationsverab. Kybernet 11 695-702
  • [2] Seifert LD(1929)Zur Einführung des Scharbegriffs J. Reine Angew. Math. 160 199-207
  • [3] Baer R(1943)The ternary operation Bull. Am. Math. Soc. 49 869-877
  • [4] Certaine J(1989) of a group Proc. Lond. Math. Soc. 58 74-88
  • [5] Frougny C(1949)Finiteness conditions on subgroups and formal language theory Trans. Am. Math. Soc. 67 421-432
  • [6] Sakarovitch J(1993)Coset representations in free groups Int. J. Algebra Comput. 3 79-99
  • [7] Schupp P(1974)Free inverse monoids and graph immersions Proc. Lond. Math. Soc. 30 385-404
  • [8] Hall M(1958)Free inverse semigroups Proc. Am. Math. Soc. 9 541-544
  • [9] Margolis SW(1979)Linear automaton transformations Semigroup Forum 18 33-50
  • [10] Meakin JC(1962)Une topologie du monoïde libre Izv. Vyssh. Uchebn. Zaved. Mat. 3 164-176