Boundary value problem with normal derivatives for a higher-order elliptic equation on the plane

被引:0
作者
B. D. Koshanov
A. P. Soldatov
机构
[1] Institute of Mathematics and Mathematical Modeling,
[2] Belgorod State University,undefined
来源
Differential Equations | 2016年 / 52卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For an elliptic operator of order 2l with constant (and only leading) real coefficients, we consider a boundary value problem in which the normal derivatives of order (kj −1), j = 1,..., l, where 1 ≤ k1 < ··· < kl, are specified. It becomes the Dirichlet problem for kj = j and the Neumann problem for kj = j + 1. We obtain a sufficient condition for the Fredholm property of which problem and derive an index formula.
引用
收藏
页码:1594 / 1609
页数:15
相关论文
共 8 条
[1]  
Bitsadze A.V.(1988)Some Properties of Polyharmonic Functions Differ. Uravn. 24 825-831
[2]  
Dezin A.A.(1954)The Second Boundary Problem for the Polyharmonic Equation in the Space Dokl. Akad. Nauk 96 901-903
[3]  
Malakhova N.A.(2008)On a Boundary Value Problem for a Higher-Order Elliptic Equation Differ. Uravn. 44 1077-1083
[4]  
Soldatov A.P.(1989)Higher-Order Elliptic Systems Differ. Uravn. 25 136-144
[5]  
Soldatov A.P.(2006)ntegral Representation of Solutions of Beltrami Generalized System Nauch. Vedom. Belgorod Univ. Ser. Inform. & Appl. Math. 6 3-6
[6]  
Vashchenko O.V.(2004)Hyperanalytic Functions and Their Applications J. Math. Sci. 17 1-111
[7]  
Soldatov A.P. I.(undefined)undefined undefined undefined undefined-undefined
[8]  
Soldatov A.P.(undefined)undefined undefined undefined undefined-undefined