Lorentz Spaces and Embeddings Induced by Almost Greedy Bases in Banach Spaces

被引:0
作者
F. Albiac
J. L. Ansorena
机构
[1] Universidad Pública de Navarra,Mathematics Department
[2] Universidad de La Rioja,Department of Mathematics and Computer Sciences
来源
Constructive Approximation | 2016年 / 43卷
关键词
Quasi-greedy basis; Democracy function; Symmetric basis; Embedding; Lorentz sequence space; Interpolation of spaces; 46B15; 41A65; 46B70;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to undertake a systematic qualitative study of the built-in symmetry of almost greedy bases in Banach spaces. More specifically, by refining the techniques that Wojtaszczyk used in J Approx Theory 107(2), 293–314 2000 for quasi-greedy bases in Hilbert spaces, we show that an almost greedy basis in a Banach space X naturally induces embeddings that allow sandwiching X between two symmetric sequence spaces. Using classical interpolation techniques in combination with duality, we also explore what we label as interpolation of greedy bases. It is then proved that the only almost greedy basis shared by any two ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} spaces is equivalent to the standard unit vector basis and that there is no basis which is simultaneously (normalized and) greedy in two different Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{p}$$\end{document} spaces. As a by-product of our work, we obtain a new characterization of greedy bases in Banach spaces in terms of bounded linear operators.
引用
收藏
页码:197 / 215
页数:18
相关论文
共 35 条
[1]  
Bessaga C(1958)On bases and unconditional convergence of series in Banach spaces Studia Math. 17 151-164
[2]  
Pełczyński A(2007)Recent developments in the theory of Lorentz spaces and weighted inequalities Mem. Amer. Math. Soc. 187 xii+128-494
[3]  
Carro MJ(1993)Weighted Lorentz spaces and the Hardy operator J. Funct. Anal. 112 480-234
[4]  
Raposo JA(2003)Interpolation of classical Lorentz spaces Positivity 7 225-245
[5]  
Soria J(1996)Interpolation of operators on decreasing functions Math. Scand. 78 233-2344
[6]  
Carro MJ(1998)Conjugate Hardy’s inequalities with decreasing weights Proc. Amer. Math. Soc. 126 2341-42
[7]  
Soria J(2006)Non-equivalent greedy and almost greedy bases in J. Funct. Spaces Appl. 4 25-101
[8]  
Cerdà J(2003)On the existence of almost greedy bases in Banach spaces, Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday Studia Math. 159 67-597
[9]  
Coll H(2003)The thresholding greedy algorithm, greedy bases, and duality Constr. Approx. 19 575-69
[10]  
Cerdà J(2012)Quasi-greedy bases and Lebesgue-type inequalities Studia Math. 211 41-470