A fully automatic multiparametric radiomics model for differentiation of adult pilocytic astrocytomas from high-grade gliomas

被引:0
作者
Yae Won Park
Jihwan Eom
Dain Kim
Sung Soo Ahn
Eui Hyun Kim
Seok-Gu Kang
Jong Hee Chang
Se Hoon Kim
Seung-Koo Lee
机构
[1] Yonsei University College of Medicine,Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science
[2] Yonsei University,Department of Computer Science
[3] Yonsei University,Department of Psychology
[4] Yonsei University College of Medicine,Department of Neurosurgery
[5] Yonsei University College of Medicine,Department of Pathology
来源
European Radiology | 2022年 / 32卷
关键词
Glioma; Machine learning; Magnetic resonance imaging; Pilocytic astrocytoma; Radiomics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4500 / 4509
页数:9
相关论文
共 106 条
[11]  
Ellezam B(2012)Pilocytic astrocytoma survival in adults: analysis of the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute J Neurooncol 108 187-193
[12]  
Sadighi ZS(2019)Extent of Resection, MGMT Promoter Methylation Status and Tumor Location Independently Predict Progression-Free Survival in Adult Sporadic Pilocytic Astrocytoma Cancers (Basel) 11 563-577
[13]  
Collins VP(2016)Radiomics: Images Are More than Pictures, They Are Data Radiology 278 693-698
[14]  
Jones DT(2018)Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation of IDH1-Mutation and 1p/19q-Codeletion Status in World Health Organization Grade II Gliomas AJNR Am J Neuroradiol 39 1381-1389
[15]  
Giannini C(2019)Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors Korean J Radiol 20 880-889
[16]  
Palma L(2016)Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models Radiology 280 1124-1137
[17]  
Guidetti B(2019)Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives Korean J Radiol 20 109673-820
[18]  
Weller M(2021)Quality assessment of meningioma radiomics studies: Bridging the gap between exploratory research and clinical applications Eur J Radiol 138 803-773
[19]  
van den Bent M(2016)The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary Acta Neuropathol 131 765-740
[20]  
Tonn JC(2009)IDH1 and IDH2 mutations in gliomas N Engl J Med 360 728-1320