共 9 条
- [1] The modal logic of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta(\mathbb{N})}$$\end{document} Archive for Mathematical Logic, 2009, 48 (3-4) : 231 - 242
- [2] Weakening and Extending Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} Logica Universalis, 2015, 9 (3) : 383 - 409
- [3] A functional approach for temporal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\times$\end{document} modal logics Acta Informatica, 2003, 39 (2) : 71 - 96
- [4] A Modal Logic Based on Linearly Ordered \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document}-Spaces Algebra and Logic, 2003, 42 (3) : 181 - 191
- [5] A General Framework for FDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {FDE}$$\end{document}-Based Modal Logics Studia Logica, 2020, 108 (6) : 1281 - 1306
- [6] PSPACE Tableau Algorithms for Acyclic Modalized \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{\mathcal{ALC}}$\end{document} Journal of Automated Reasoning, 2012, 49 (4) : 551 - 582
- [7] Subspaces of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document} whose d-logics do not have the FMP Archive for Mathematical Logic, 2012, 51 (5-6) : 661 - 670
- [8] Axiomatizing Jaśkowski’s Discussive Logic D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {D_2}$$\end{document} Studia Logica, 2018, 106 (6) : 1163 - 1180
- [9] FMP-Ensuring Logics, RA-Ensuring Logics and FA-Ensuring Logics in NExtK4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {NExtK4.3}$$\end{document} Studia Logica, 2023, 111 (6) : 899 - 946