Feynman–Kac formula for perturbations of order ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 1$$\end{document}, and noncommutative geometry

被引:0
作者
Sebastian Boldt
Batu Güneysu
机构
[1] Universität Leipzig,Mathematisches Institut
[2] Technische Universität Chemnitz,Fakultät für Mathematik
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2023年 / 11卷 / 4期
关键词
Feynman-Kac formula; noncommutative geometry; holomorphic semigroups; Primary 58J65; Secondary 47D03; 58J05;
D O I
10.1007/s40072-022-00269-3
中图分类号
学科分类号
摘要
Let Q be a differential operator of order ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 1$$\end{document} on a complex metric vector bundle E→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {E}\rightarrow \mathscr {M}$$\end{document} with metric connection ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} over a possibly noncompact Riemannian manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {M}$$\end{document}. Under very mild regularity assumptions on Q that guarantee that ∇†∇/2+Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^{\dagger }\nabla /2+Q$$\end{document} canonically induces a holomorphic semigroup e-zHQ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {e}^{-zH^{\nabla }_{Q}}$$\end{document} in ΓL2(M,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{L^2}(\mathscr {M},\mathscr {E})$$\end{document} (where z runs through a complex sector which contains [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}), we prove an explicit Feynman–Kac type formula for e-tHQ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {e}^{-tH^{\nabla }_{Q}}$$\end{document}, t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0$$\end{document}, generalizing the standard self-adjoint theory where Q is a self-adjoint zeroth order operator. For compact M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {M}$$\end{document}’s we combine this formula with Berezin integration to derive a Feynman–Kac type formula for an operator trace of the form TrV~∫0te-sHV∇Pe-(t-s)HV∇ds,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathrm {Tr}\left( \widetilde{V}\int ^t_0\mathrm {e}^{-sH^{\nabla }_{V}}P\mathrm {e}^{-(t-s)H^{\nabla }_{V}}\mathrm {d}s\right) , \end{aligned}$$\end{document}where V,V~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V,\widetilde{V}$$\end{document} are of zeroth order and P is of order ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 1$$\end{document}. These formulae are then used to obtain a probabilistic representations of the lower order terms of the equivariant Chern character (a differential graded extension of the JLO-cocycle) of a compact even-dimensional Riemannian spin manifold, which in combination with cyclic homology play a crucial role in the context of the Duistermaat–Heckmann localization formula on the loop space of such a manifold.
引用
收藏
页码:1519 / 1552
页数:33
相关论文
共 25 条
  • [1] Aizenman M(1982)Brownian motion and Harnack inequality for Schrödinger operators Commun. Pure Appl. Math. 35 209-273
  • [2] Simon B(1984)The Atiyah–Singer theorems: a probabilistic approach. I. The index theorem J. Funct. Anal. 57 56-99
  • [3] Bismut J-M(1985)Index theorem and equivariant cohomology on the loop space Commun. Math. Phys. 98 213-237
  • [4] Bismut J-M(2000)Continuity properties of Schrödinger semigroups with magnetic fields Rev. Math. Phys. 12 181-225
  • [5] Broderix K(1983)Maximum principle for parabolic inequalities and the heat flow on open manifolds Indiana Univ. Math. J. 32 703-716
  • [6] Hundertmark D(2001)Heat equation derivative formulas for vector bundles J. Funct. Anal. 183 42-108
  • [7] Leschke H(2015)Functions with bounded variation on a class of Riemannian manifolds with Ricci curvature unbounded from below Math. Ann. 363 1307-1331
  • [8] Dodziuk J(2012)On generalized Schrödinger semigroups J. Funct. Anal. 262 4639-4674
  • [9] Driver BK(2022)The Chern character of Adv. Math. 395 10814-14
  • [10] Thalmaier A(1988)-summable Fredholm modules over dg algebras and localization on loop space Commun. Math. Phys. 118 1-93