共 50 条
- [41] Exact solitons of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-component discrete coupled integrable system Theoretical and Mathematical Physics, 2023, 214 (1) : 36 - 71
- [42] Compactons in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document}-symmetric generalized Korteweg-de Vries equations Pramana, 2009, 73 (2) : 375 - 385
- [43] Particles versus fields in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document}-symmetrically deformed integrable systems Pramana, 2009, 73 (2) : 363 - 373
- [44] Solitonic interactions and explicit solutions for the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(2+1)}$$\end{document}-dimensional nonlocal derivative nonlinear Schrödinger equation Nonlinear Dynamics, 2024, 112 (5) : 3797 - 3809
- [45] Spherical-separability of Non-Hermitian Hamiltonians and Pseudo- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document} -symmetry International Journal of Theoretical Physics, 2009, 48 (1) : 183 - 193
- [46] On analysis of nonlinear dynamical systems via methods connected with λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-symmetry Nonlinear Dynamics, 2016, 85 (3) : 1571 - 1595
- [47] Scarcity of real discrete eigenvalues in non-analytic complex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document}-symmetric potentials Pramana, 2009, 73 (2) : 323 - 328
- [48] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-Symmetries, isochronicity, and integrating factors of nonlinear ordinary differential equations Journal of Engineering Mathematics, 2013, 82 (1) : 85 - 99
- [49] An analytical solution for quantum scattering through a PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal P}{\cal T}$$\end{document}-symmetric delta potential Frontiers of Physics, 2021, 16 (4)
- [50] Some results on surfaces with different mean curvatures in RN+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N+1}$$\end{document} and LN+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {L}}^{N+1}$$\end{document} Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 (1): : 335 - 357