Congruences for generalized Apéry numbers and Gaussian hypergeometric series

被引:7
作者
Kalita G. [1 ]
Chetry A.S. [1 ]
机构
[1] Department of Mathematics and Sciences, Indian Institute of Information Technology Guwahati, Ambari, GNB Road, Assam
关键词
Apéry numbers; Gaussian hypergeometric series; Supercongruences;
D O I
10.1007/s40993-016-0069-z
中图分类号
学科分类号
摘要
For positive integers f1, f2, m, l, we define a generalization of Apéry numbers A(f1, f2, m, l, λ) given by A(f1,f2,m,l,λ):=∑j=0f2(f1+jj)m(f2j)lλj.In this article, we deduce congruence relations satisfied by these generalized Apéry numbers extending results of (Coster in Supercongruences, Ph.D. thesis, Universiteit Leiden, 1988). We find expressions of A(f1, f2, m, l, λ) in terms of Gaussian hypergeometric series and evaluate some new supercongruences similar to Beukers’ supercongruences. © 2017, The Author(s).
引用
收藏
相关论文
共 26 条
[21]  
Mortenson E., A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. Number. Theory., 99, 1, pp. 139-147, (2003)
[22]  
Ono K., Values of Gaussian hypergeometric series, Trans. Am. Math. Soc., 350, 3, pp. 1205-1223, (1998)
[23]  
Osburn R., Schneider C., Gaussian hypergeometric series and supercongruences, Math. Comp., 78, 265, pp. 275-292, (2009)
[24]  
Osburn R., Sahu B., Straub A., Supercongruences for sporadic sequences, Proc. Edinb. Math. Soc., 59, pp. 503-518, (2016)
[25]  
Stienstra J., Beukers F., On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann., 271, 2, pp. 269-304, (1985)
[26]  
Van Hamme L., Proof of a conjecture of Beukers on Apéry numbers, Proceedings of the conference on p -adic analysis, (1986)