Congruences for generalized Apéry numbers and Gaussian hypergeometric series

被引:7
作者
Kalita G. [1 ]
Chetry A.S. [1 ]
机构
[1] Department of Mathematics and Sciences, Indian Institute of Information Technology Guwahati, Ambari, GNB Road, Assam
关键词
Apéry numbers; Gaussian hypergeometric series; Supercongruences;
D O I
10.1007/s40993-016-0069-z
中图分类号
学科分类号
摘要
For positive integers f1, f2, m, l, we define a generalization of Apéry numbers A(f1, f2, m, l, λ) given by A(f1,f2,m,l,λ):=∑j=0f2(f1+jj)m(f2j)lλj.In this article, we deduce congruence relations satisfied by these generalized Apéry numbers extending results of (Coster in Supercongruences, Ph.D. thesis, Universiteit Leiden, 1988). We find expressions of A(f1, f2, m, l, λ) in terms of Gaussian hypergeometric series and evaluate some new supercongruences similar to Beukers’ supercongruences. © 2017, The Author(s).
引用
收藏
相关论文
共 26 条
[1]  
Ahlgren S., Ono K., A Gaussian hypergeometric series evaluation and Apéry number supercongruences, J. Reine. Angew. Math., 518, pp. 187-212, (2000)
[2]  
Ahlgren S., Gaussian hypergeometric series and combinatorial congruences, symbolic computation, number theory, special functions, physics and combinatorics, Dev. Math., 4, pp. 1-12, (2001)
[3]  
Apery R., Irrationalité de ζ(2) and ζ(3), Asterisque., 61, pp. 11-13, (1979)
[4]  
Barman R., Kalita G., Certain values of Gaussian hypergeometric series and a family of algebraic curves, Int. J. Number. Theory., 8, 4, pp. 945-961, (2012)
[5]  
Barman R., Kalita G., Hypergeometric functions over F<sub>q</sub> and traces of Frobenius for elliptic curves, Proc. Am. Math. Soc., 141, 10, pp. 3403-3410, (2013)
[6]  
Barman R., Kalita G., Elliptic curves and special values of Gaussian hypergeometric series, J. Number. Theory., 133, 9, pp. 3099-3111, (2013)
[7]  
Barman R., Kalita G., Saikia N., Hyperelliptic curves and values of Gaussian hypergeometric series, Arch. Math. (Basel), 102, pp. 345-355, (2014)
[8]  
Berndt B.C., Evans R.J., Williams K.S., Gauss and Jacobi Sums, (1997)
[9]  
Beukers F., Another congruence for the Apéry numbers, J. Number. Theory., 25, pp. 201-210, (1987)
[10]  
Chan H.H., Cooper S., Sica F., Congruences satisfied by Apéry-like numbers, Int. J. Number. Theory., 6, 1, pp. 89-97, (2010)