Metabolic engineering of Caldicellulosiruptor bescii for hydrogen production

被引:3
|
作者
Cha, Minseok [1 ]
Kim, Jung Kon [2 ]
Lee, Won-Heong [3 ]
Song, Hyoungwoon [4 ]
Lee, Tae-Gi [5 ]
Kim, Sun-Ki [5 ]
Kim, Soo-Jung [1 ,3 ]
机构
[1] Chonnam Natl Univ, Res Ctr Biol Cybernet, Gwangju 61186, South Korea
[2] Natl Inst Anim Sci, Dept Anim Environm, Wonju 55365, South Korea
[3] Chonnam Natl Univ, Dept Integrat Food Biosci & Biotechnol, Gwangju 61186, South Korea
[4] Inst Adv Engn, Gyeonggi 17180, South Korea
[5] Chung Ang Univ, Dept Food Sci & Biotechnol, Gyeonggi 17546, South Korea
基金
新加坡国家研究基金会;
关键词
Hydrogen; Lignocellulosic biomass; Caldicellulosiruptor bescii; Consolidated bioprocessing (CBP); Metabolic engineering; ESCHERICHIA-COLI; HYPERTHERMOPHILIC ARCHAEON; BIOHYDROGEN PRODUCTION; CLOSTRIDIUM-BUTYRICUM; EXTREME THERMOPHILES; THERMOTOGA-MARITIMA; DARK FERMENTATION; PLANT BIOMASS; BACTERIUM; ETHANOL;
D O I
10.1007/s00253-023-12974-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hydrogen is an alternative fuel for transportation vehicles because it is clean, sustainable, and highly flammable. However, the production of hydrogen from lignocellulosic biomass by microorganisms presents challenges. This microbial process involves multiple complex steps, including thermal, chemical, and mechanical treatment of biomass to remove hemicellulose and lignin, as well as enzymatic hydrolysis to solubilize the plant cell walls. These steps not only incur costs but also result in the production of toxic hydrolysates, which inhibit microbial growth. A hyper-thermophilic bacterium of Caldicellulosiruptor bescii can produce hydrogen by decomposing and fermenting plant biomass without the need for conventional pretreatment. It is considered as a consolidated bioprocessing (CBP) microorganism. This review summarizes the basic scientific knowledge and hydrogen-producing capacity of C. bescii. Its genetic system and metabolic engineering strategies to improve hydrogen production are also discussed.
引用
收藏
页码:17 / 17
页数:1
相关论文
共 50 条
  • [41] In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose
    Myung, Suwan
    Rollin, Joseph
    You, Chun
    Sun, Fangfang
    Chandrayan, Sanjeev
    Adams, Michael W. W.
    Zhang, Y. -H. Percival
    METABOLIC ENGINEERING, 2014, 24 : 70 - 77
  • [42] Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar
    Straub, Christopher T.
    Bing, Ryan G.
    Wang, Jack P.
    Chiang, Vincent L.
    Adams, Michael W. W.
    Kelly, Robert M.
    BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [43] Metabolomics of Escherichia coli for Disclosing Novel Metabolic Engineering Strategies for Enhancing Hydrogen and Ethanol Production
    Valle, Antonio
    de la Calle, Maria Elena
    Muhamadali, Howbeer
    Hollywood, Katherine A.
    Xu, Yun
    Lloyd, Jonathan R.
    Goodacre, Royston
    Cantero, Domingo
    Bolivar, Jorge
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (14)
  • [44] Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory
    Willquist, Karin
    Zeidan, Ahmad A.
    van Niel, Ed Wj
    MICROBIAL CELL FACTORIES, 2010, 9
  • [45] Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol
    Kien Trung Tran
    Toshinari Maeda
    Thomas K. Wood
    Applied Microbiology and Biotechnology, 2014, 98 : 4757 - 4770
  • [46] A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii
    Lipscomb, Gina L.
    Conway, Jonathan M.
    Blumer-Schuette, Sara E.
    Kelly, Robert M.
    Adams, Michael W. W.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (14) : 4421 - 4428
  • [47] Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media
    Kridelbaugh, Donna M.
    Nelson, Joshua
    Engle, Nancy L.
    Tschaplinski, Timothy J.
    Graham, David E.
    BIORESOURCE TECHNOLOGY, 2013, 130 : 125 - 135
  • [48] Homologous Expression of the Caldicellulosiruptor bescii CelA Reveals that the Extracellular Protein Is Glycosylated
    Chung, Daehwan
    Young, Jenna
    Bomble, Yannick J.
    Vander Wall, Todd A.
    Groom, Joseph
    Himmel, Michael E.
    Westpheling, Janet
    PLOS ONE, 2015, 10 (03):
  • [49] Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses
    Herbel, Zsofia
    Rakhely, Gabor
    Bagi, Zoltan
    Ivanova, Galina
    Acs, Norbert
    Kovacs, Etelka
    Kovacs, Kornel L.
    ENVIRONMENTAL TECHNOLOGY, 2010, 31 (8-9) : 1017 - 1024
  • [50] The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate
    Poudel, Suresh
    Giannone, Richard J.
    Basen, Mirko
    Nookaew, Intawat
    Poole, Farris L., II
    Kelly, Robert M.
    Adams, Michael W. W.
    Hettich, Robert L.
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11