A Generalized Von Neumann’s Theorem for Linear Relations in Hilbert Spaces

被引:0
作者
Marcel Roman
Adrian Sandovici
机构
[1] “Gheorghe Asachi” Technical University of Iaşi,Department of Mathematics and Informatics
来源
Results in Mathematics | 2024年 / 79卷
关键词
Hilbert space; closed linear relation; nonnegative linear relation; selfadjoint linear relation; Von Neumann theorem; 47A06; 47B25; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} is a real or complex Hilbert space, T a linear relation in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} and B a bounded linear operator in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document}, whose adjoints are denoted by T∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{*}$$\end{document} and B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{*}$$\end{document}, respectively. It is shown in this note that if the following four linear relations TBB∗T∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$TBB^{*}T^{*}$$\end{document}, B∗T∗TB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{*}T^{*}TB$$\end{document}, BTT∗B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BTT^{*}B^{*}$$\end{document} and T∗B∗BT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{*}B^{*}BT$$\end{document} are selfadjoint in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} then T must be a closed linear relation.
引用
收藏
相关论文
共 31 条
[1]  
Arens R(1961)Operational calculus of linear relations Pac. J. Math. 11 9-23
[2]  
Coddington EA(1978)Positive selfadjoint extensions of positive symmetric subspaces Math. Z. 159 203-214
[3]  
de Snoo HSV(2006)Form sums of nonnegative selfadjoint operators Acta Math. Hungar. 111 81-105
[4]  
Hassi S(2007)A general factorization approach to the extension theory of nonnegative operators and relations J. Oper. Theory 58 351-386
[5]  
Sandovici A(2007)Extremal extensions for the sum of nonnegative selfadjoint relations Proc. Am. Math. Soc. 135 3193-3204
[6]  
de Snoo HSV(2015)Factorization, majorization, and domination for linear relations Annales Univ. Sci. Budapest 58 55-72
[7]  
Winkler H(2009)Componentwise and canonical decompositions of linear relations Dissertationes Mathematicae 465 59-131
[8]  
Hassi S(2023)Certain properties involving the unbounded operators J. Math. Anal. Appl. 525 49-310
[9]  
Sandovici A(1930), Math. Ann. 102 294-1756
[10]  
de Snoo HSV(1932), and Ann. Math. 33 1750-2171