On a Elliptic System Involving Nonhomogeneous Nonlinearities and Critical Growth

被引:0
作者
Elisandra Gloss
Everaldo S. Medeiros
Uberlandio Severo
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2023年 / 54卷
关键词
Elliptic systems; Critical growth; Variational methods; 35J47; 35J50; 35J57;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^N$$\end{document} be a bounded domain with N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. We address the existence and nonexistence of solutions for the following class of elliptic systems: -Δu=au+bv+μ|u|p-2uinΩ-Δv=bu+av+|v|2∗-2vinΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=a u+b v+ \mu |u|^{p-2}u &{} \text {in}\quad \Omega \\ -\Delta v=bu+a v+ |v|^{2^*-2}v &{} \text {in}\quad \Omega \end{array}\right. } \end{aligned}$$\end{document}with Dirichlet boundary condition, where a,b∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in {\mathbb {R}}$$\end{document}, the exponent p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, μ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in {\mathbb {R}}$$\end{document} is a parameter and 2∗=2N/(N-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*=2N/(N-2)$$\end{document} is the critical Sobolev exponent. By exploiting minimization arguments, minimax techniques and a Pohozaev identity, we obtain various results for the above system by analyzing the interplay between a,b,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,\mu $$\end{document} and the exponent p.
引用
收藏
相关论文
共 29 条
[1]  
Akhmediev N(1999)Partially coherent solitons on a finite background Phys. Rev. Lett. 82 2661-2664
[2]  
Ankiewicz A(2000)On systems of elliptic equations involving subcritical or critical Sobolev exponents Nonlinear Anal. Ser. A 42 771-787
[3]  
Alves CO(1973)Dual Variational Methods in Critical Point Theory and Applications J. Functional Analysis 14 349-381
[4]  
de Morais Filho DC(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Comm. Pure Appl. Math. 36 437-477
[5]  
Souto MAS(1985)An existence result for nonlinear elliptic problems involving critical Sobolev exponent Ann. Inst. H. Poincaré Anal. Non Linéaire 2 463-470
[6]  
Ambrosetti A(1984)Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents Ann. Inst. H. Poincaré Anal. Non Linéaire 1 341-350
[7]  
Rabinowitz PH(2012)Ground states for a system of Schrödinger equations with critical exponent J. Funct. Anal. 262 3091-3107
[8]  
Brezis H(1999)Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees Comm. Partial Differential Equations 24 1537-1553
[9]  
Nirenberg N(2012)Multiplicity of solutions for homogeneous elliptic systems with critical growth J. Math. Anal. Appl. 385 770-785
[10]  
Capozzi A(2017)Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent J. Differential Equations 263 709-731