A reaction–diffusion SIS epidemic model in an almost periodic environment

被引:0
作者
Bin-Guo Wang
Wan-Tong Li
Zhi-Cheng Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Reaction–diffusion; Almost periodicity; Epidemic model; Basic reproduction ratio; Threshold dynamics; 35B15; 35K57; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
A susceptible–infected–susceptible almost periodic reaction–diffusion epidemic model is studied by means of establishing the theories and properties of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Particularly, the asymptotic behaviors of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document} with respect to the diffusion rate DI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_{I}}$$\end{document} of the infected individuals are obtained. Furthermore, the uniform persistence, extinction and global attractivity are presented in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Our results indicate that the interaction of spatial heterogeneity and temporal almost periodicity tends to enhance the persistence of the disease.
引用
收藏
页码:3085 / 3108
页数:23
相关论文
共 50 条
[41]   Turing pattern selection in a reaction diffusion epidemic model [J].
Wang Wei-Ming ;
Liu Hou-Ye ;
Cai Yong-Li ;
Li Zhen-Qing .
CHINESE PHYSICS B, 2011, 20 (07)
[42]   Turing patterns in a reaction-diffusion epidemic model [J].
Jia, Yanfei ;
Cai, Yongli ;
Shi, Hongbo ;
Fu, Shengmao ;
Wang, Weiming .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (02)
[43]   The diffusion identification in a SIS reaction-diffusion system [J].
Coronel, Anibal ;
Huancas, Fernando ;
Hess, Ian ;
Tello, Alex .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) :562-581
[44]   Time periodic travelling waves for an advection-reaction-diffusion SIR epidemic model with seasonality and bilinear incidence [J].
Jiang, Xibei ;
Wu, Weixin .
CHAOS SOLITONS & FRACTALS, 2025, 191
[45]   An epidemic model in a patchy environment [J].
Wang, W ;
Zhao, XQ .
MATHEMATICAL BIOSCIENCES, 2004, 190 (01) :97-112
[46]   On an SIS epidemic model with power-like nonlinear incidence and with/without cross-diffusion [J].
Li, Huicong ;
Xiang, Tian .
STUDIES IN APPLIED MATHEMATICS, 2024, 153 (01)
[47]   Global stability of an SIS epidemic model with delays [J].
Fushimi, Kei ;
Enatsu, Yoichi ;
Ishiwata, Emiko .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) :5345-5354
[48]   Spreading speed and traveling waves for an epidemic model in a periodic patchy environment [J].
San, Xue-Feng ;
Wang, Zhi-Cheng ;
Feng, Zhaosheng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
[49]   Dynamics of SIS epidemic model in heterogeneous hypernetworks [J].
Wang, Wenhui ;
Zhang, Juping ;
Jin, Zhen .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 655
[50]   Analysis of a SIS Epidemic Model with Two Strians [J].
Cai, Liming ;
Li, Xuezhi .
PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, :37-41