A reaction–diffusion SIS epidemic model in an almost periodic environment

被引:0
作者
Bin-Guo Wang
Wan-Tong Li
Zhi-Cheng Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Reaction–diffusion; Almost periodicity; Epidemic model; Basic reproduction ratio; Threshold dynamics; 35B15; 35K57; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
A susceptible–infected–susceptible almost periodic reaction–diffusion epidemic model is studied by means of establishing the theories and properties of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Particularly, the asymptotic behaviors of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document} with respect to the diffusion rate DI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_{I}}$$\end{document} of the infected individuals are obtained. Furthermore, the uniform persistence, extinction and global attractivity are presented in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Our results indicate that the interaction of spatial heterogeneity and temporal almost periodicity tends to enhance the persistence of the disease.
引用
收藏
页码:3085 / 3108
页数:23
相关论文
共 50 条
[31]   An almost periodic Ross-Macdonald model with time delay in a patchy environment [J].
Wang, Yingying ;
Wang, Bin-Guo .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 76
[32]   An SIS reaction-diffusion model with spatial/behavioral heterogeneity [J].
Li, Lele ;
Xiao, Yanni .
COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04)
[33]   Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models [J].
Bin-Guo Wang ;
Xiao-Qiang Zhao .
Journal of Dynamics and Differential Equations, 2013, 25 :535-562
[34]   Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models [J].
Wang, Bin-Guo ;
Zhao, Xiao-Qiang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (02) :535-562
[35]   Analysis of an SIS epidemic model with treatment [J].
Wang, Jinghai ;
Jiang, Qiaohong .
ADVANCES IN DIFFERENCE EQUATIONS, 2014, :1-10
[36]   Threshold dynamics of a predator-prey model with maturation delay in an almost periodic environment [J].
Qiang, Lizhong ;
Liu, Dandan ;
Sun, Jinyi .
ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01)
[37]   A stochastic SIS epidemic model with vaccination [J].
Cao, Boqiang ;
Shan, Meijing ;
Zhang, Qimin ;
Wang, Weiming .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 :127-143
[38]   Analysis of an SIS epidemic model with treatment [J].
Jinghai Wang ;
Qiaohong Jiang .
Advances in Difference Equations, 2014
[39]   Global dynamics of an SIS epidemic model with cross-diffusion: applications to quarantine measures [J].
Chu, Jiawei ;
Wang, Zhi-An .
NONLINEARITY, 2025, 38 (05)
[40]   Threshold dynamics and asymptotic profiles of a time-periodic nonlocal dispersal SIS epidemic model with Dirichlet boundary conditions [J].
Lin, Xiandong ;
Wang, Qiru .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 :498-531