A reaction–diffusion SIS epidemic model in an almost periodic environment

被引:0
作者
Bin-Guo Wang
Wan-Tong Li
Zhi-Cheng Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Reaction–diffusion; Almost periodicity; Epidemic model; Basic reproduction ratio; Threshold dynamics; 35B15; 35K57; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
A susceptible–infected–susceptible almost periodic reaction–diffusion epidemic model is studied by means of establishing the theories and properties of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Particularly, the asymptotic behaviors of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document} with respect to the diffusion rate DI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_{I}}$$\end{document} of the infected individuals are obtained. Furthermore, the uniform persistence, extinction and global attractivity are presented in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Our results indicate that the interaction of spatial heterogeneity and temporal almost periodicity tends to enhance the persistence of the disease.
引用
收藏
页码:3085 / 3108
页数:23
相关论文
共 50 条
  • [21] A reaction-diffusion vector-borne disease model with incubation period in almost periodic environments
    Qiang, Lizhong
    Zhang, Xiaoting
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 79
  • [22] SPATIAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION EPIDEMIC MODEL IN TIME-SPACE PERIODIC HABITAT
    Xin, Ming-Zhen
    Wang, Bin-Guo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) : 2430 - 2465
  • [23] An SIS epidemic model in a patchy environment with pulse vaccination and quarantine
    Yang, Jiangtao
    Yang, Zhichun
    Chen, Yuming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [24] An almost periodic Ross-Macdonald model with structured vector population in a patchy environment
    Wang, Bin-Guo
    Qiang, Lizhong
    Wang, Zhi-Cheng
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (03) : 835 - 863
  • [25] THRESHOLD DYNAMICS IN A TIME-DELAYED PERIODIC SIS EPIDEMIC MODEL
    Lou, Yijun
    Zhao, Xiao-Qiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (01): : 169 - 186
  • [26] Threshold dynamics in a delayed SIS epidemic model
    Zhao, XQ
    Zou, XF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 257 (02) : 282 - 291
  • [27] Threshold dynamics of a time-periodic nonlocal dispersal SIS epidemic model with Neumann boundary conditions
    Lin, Xiandong
    Wang, Qiru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 373 : 108 - 151
  • [28] Equilibriums of an SIS Epidemic Model
    Wang, Jinghai
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING III, 2014, 678 : 103 - 106
  • [29] Reproduction numbers and the expanding fronts for a diffusion-advection SIS model in heterogeneous time-periodic environment
    Ge, Jing
    Lei, Chengxia
    Lin, Zhigui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 33 : 100 - 120
  • [30] An almost periodic Ross-Macdonald model with time delay in a patchy environment
    Wang, Yingying
    Wang, Bin-Guo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 76