A reaction–diffusion SIS epidemic model in an almost periodic environment

被引:0
作者
Bin-Guo Wang
Wan-Tong Li
Zhi-Cheng Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Reaction–diffusion; Almost periodicity; Epidemic model; Basic reproduction ratio; Threshold dynamics; 35B15; 35K57; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
A susceptible–infected–susceptible almost periodic reaction–diffusion epidemic model is studied by means of establishing the theories and properties of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Particularly, the asymptotic behaviors of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document} with respect to the diffusion rate DI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_{I}}$$\end{document} of the infected individuals are obtained. Furthermore, the uniform persistence, extinction and global attractivity are presented in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Our results indicate that the interaction of spatial heterogeneity and temporal almost periodicity tends to enhance the persistence of the disease.
引用
收藏
页码:3085 / 3108
页数:23
相关论文
共 50 条
[21]   A reaction-diffusion vector-borne disease model with incubation period in almost periodic environments [J].
Qiang, Lizhong ;
Zhang, Xiaoting .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 79
[22]   SPATIAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION EPIDEMIC MODEL IN TIME-SPACE PERIODIC HABITAT [J].
Xin, Ming-Zhen ;
Wang, Bin-Guo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) :2430-2465
[23]   An SIS epidemic model in a patchy environment with pulse vaccination and quarantine [J].
Yang, Jiangtao ;
Yang, Zhichun ;
Chen, Yuming .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
[24]   THRESHOLD DYNAMICS IN A TIME-DELAYED PERIODIC SIS EPIDEMIC MODEL [J].
Lou, Yijun ;
Zhao, Xiao-Qiang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (01) :169-186
[25]   An almost periodic Ross-Macdonald model with structured vector population in a patchy environment [J].
Wang, Bin-Guo ;
Qiang, Lizhong ;
Wang, Zhi-Cheng .
JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (03) :835-863
[26]   Reproduction numbers and the expanding fronts for a diffusion-advection SIS model in heterogeneous time-periodic environment [J].
Ge, Jing ;
Lei, Chengxia ;
Lin, Zhigui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 33 :100-120
[27]   Threshold dynamics in a delayed SIS epidemic model [J].
Zhao, XQ ;
Zou, XF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 257 (02) :282-291
[28]   Threshold dynamics of a time-periodic nonlocal dispersal SIS epidemic model with Neumann boundary conditions [J].
Lin, Xiandong ;
Wang, Qiru .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 373 :108-151
[29]   Equilibriums of an SIS Epidemic Model [J].
Wang, Jinghai .
ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING III, 2014, 678 :103-106
[30]   An almost periodic Ross–Macdonald model with structured vector population in a patchy environment [J].
Bin-Guo Wang ;
Lizhong Qiang ;
Zhi-Cheng Wang .
Journal of Mathematical Biology, 2020, 80 :835-863