A reaction–diffusion SIS epidemic model in an almost periodic environment

被引:0
作者
Bin-Guo Wang
Wan-Tong Li
Zhi-Cheng Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Reaction–diffusion; Almost periodicity; Epidemic model; Basic reproduction ratio; Threshold dynamics; 35B15; 35K57; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
A susceptible–infected–susceptible almost periodic reaction–diffusion epidemic model is studied by means of establishing the theories and properties of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Particularly, the asymptotic behaviors of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document} with respect to the diffusion rate DI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_{I}}$$\end{document} of the infected individuals are obtained. Furthermore, the uniform persistence, extinction and global attractivity are presented in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_{0}}$$\end{document}. Our results indicate that the interaction of spatial heterogeneity and temporal almost periodicity tends to enhance the persistence of the disease.
引用
收藏
页码:3085 / 3108
页数:23
相关论文
共 50 条
  • [1] A reaction-diffusion SIS epidemic model in an almost periodic environment
    Wang, Bin-Guo
    Li, Wan-Tong
    Wang, Zhi-Cheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3085 - 3108
  • [2] AN ALMOST PERIODIC EPIDEMIC MODEL IN A PATCHY ENVIRONMENT
    Wang, Bin-Guo
    Li, Wan-Tong
    Qiang, Lizhong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 271 - 289
  • [3] A reaction-diffusion epidemic model with incubation period in almost periodic environments
    Qiang, Lizhong
    Wang, Bin-Guo
    Wang, Zhi-Cheng
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (06) : 1153 - 1176
  • [4] AN ALMOST PERIODIC EPIDEMIC MODEL WITH AGE STRUCTURE IN A PATCHY ENVIRONMENT
    Wang, Bin-Guo
    Li, Wan-Tong
    Zhang, Liang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 291 - 311
  • [5] On the stochastic SIS epidemic model in a periodic environment
    Nicolas Bacaër
    Journal of Mathematical Biology, 2015, 71 : 491 - 511
  • [6] On the stochastic SIS epidemic model in a periodic environment
    Bacaer, Nicolas
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (02) : 491 - 511
  • [7] Basic reproduction ratios for almost periodic reaction-diffusion epidemic models
    Wang, Bin-Guo
    Xin, Ming-Zhen
    Huang, Shunxiang
    Li, Jing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 352 : 189 - 220
  • [8] GLOBAL DYNAMICS OF A REACTION-DIFFUSION SEIVQR EPIDEMIC MODEL IN ALMOST PERIODIC ENVIRONMENTS
    Xing, Yifan
    Li, Hong-Xu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 762 - 785
  • [9] DYNAMICS OF AN ALMOST PERIODIC EPIDEMIC MODEL WITH NON-LOCAL INFECTIONS AND LATENCY IN A PATCHY ENVIRONMENT
    Wang, Bin-Guo
    Zhang, Jiangqian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (08): : 3378 - 3407
  • [10] The SIS model with diffusion of virus in the environment
    Pang, Danfeng
    Xiao, Yanni
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (04) : 2852 - 2874