On split Lie triple systems II

被引:0
作者
Antonio J. Calderón Martín
M. Forero Piulestán
机构
[1] Universidad de Cádiz,Departamento de Matemáticas
来源
Proceedings - Mathematical Sciences | 2010年 / 120卷
关键词
Lie triple system; system of roots; root space; split Lie algebra; structure theory;
D O I
暂无
中图分类号
学科分类号
摘要
In [4] it is studied that the structure of split Lie triple systems with a coherent 0-root space, that is, satisfying [T0, T0, T] = 0 and [T0, Tα, T0] ≠ 0 for any nonzero root α and where T0 denotes the 0-root space and Tα the α-root space, by showing that any of such triple systems T with a symmetric root system is of the form T = U + ΣjIj with U a subspace of the 0-root space T0 and any Ij a well described ideal of T, satisfying [Ij, T, Ik] = 0 if j ≠ k. It is also shown in [4] that under certain conditions, a split Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of T is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces.
引用
收藏
页码:185 / 198
页数:13
相关论文
共 15 条
  • [1] Balachandran V. K.(1972)Real Indian J. Pure Appl. Math. 3 1224-1246
  • [2] Calderón A. J.(2004)*-algebras Comm. Algebra 32 2443-2455
  • [3] Forero M.(2008)On locally finite split Lie triple systems Proc. Indian Acad. Sci. (Math. Sci.) 118 351-356
  • [4] Calderón A. J.(2009)Split Lie algebras with symmetric root systems Proc. Indian. Acad. Sci. (Math. Sci.) 119 165-177
  • [5] Calderón A. J.(2009)On split Lie triple systems Algbr. Represent. Theor. 12 401-415
  • [6] Calderón A. J.(2009)On simple split Lie triple systems Acta Mathematica Sinica 25 1759-74
  • [7] Calderón A. J.(1990)Integrable roots in split Lie triple systems Math. Proc. Cambridge Philos. Soc. 107 361-365
  • [8] Cuenca J. A.(1980)Structure theory for J. Algebra 62 384-392
  • [9] García A.(1952)*-algebras Trans. Am. Math. Soc. 72 217-242
  • [10] Martín C.(2000)Dynkin diagrams for Lie triple systems J. Algebra 225 534-580