Nonsolvable Finite Groups Whose All Nonsolvable Superlocals Are Hall Subgroups

被引:0
作者
V. A. Vedernikov
机构
[1] Moscow City Pedagogical University,
来源
Siberian Mathematical Journal | 2020年 / 61卷
关键词
finite group; nonsolvable group; local maximal subgroup; superlocal; Hall subgroup; 512.542;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the nonabelian simple finite groups whose every nonsolvable local maximal subgroup is a Hall subgroup, and the nonsolvable finite groups whose all nonsolvable superlocals are Hall subgroups.
引用
收藏
页码:778 / 794
页数:16
相关论文
共 26 条
[1]  
Monakhov VS(2008)Finite Math. Notes 84 363-366
[2]  
Tikhonenko TV(2008)-solvable groups whose maximal subgroups have the Hall property Izv. F. Skorina Gomel Univ. 50 198-206
[3]  
Tyutyanov VN(2012)Finite groups with maximal Hall subgroups Sib. Math. J. 53 853-861
[4]  
Maslova NV(2013)Nonabelian composition factors of a finite group whose all maximal subgroups are Hall Siberian Adv. Math. 23 196-209
[5]  
Maslova NV(2014)Finite groups whose maximal subgroups have the Hall property Proc. Steklov Inst. Math. 285 S191-S202
[6]  
Revin DO(2014)Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup Sib. Math. J. 55 451-456
[7]  
Vedernikov VA(2015)On finite groups with given maximal subgroups Proc. Steklov Inst. Math. 289 64-76
[8]  
Monakhov VS(2015)Nonabelian composition factors of a finite group with arithmetic constraints on nonsolvable maximal subgroups Algebra and Logic 54 65-69
[9]  
Tyutyanov VN(2017)Finite groups with arithmetic restrictions on maximal subgroups Proc. Steklov Inst. Math. 299 148-157
[10]  
Demina EN(2003)Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups Algebra and Logic 42 192-206