Peacock Graphs are Determined by Their Laplacian Spectra

被引:0
作者
Mohammad Reza Oboudi
Ali Zeydi Abdian
机构
[1] Shiraz University,Department of Mathematics, College of Sciences
[2] Lorestan University,Department of Mathematics, College of Science
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2020年 / 44卷
关键词
Peacock graph; Laplacian matrix; Laplacian spectrum; -cospectral; DLS; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
A peacock graph PG=(i,j,k;b1,b2,…,bs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PG=(i, j, k\,; b_1, b_2,\ldots ,b_s)$$\end{document}, where i,j,k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i,j,k\ge 3$$\end{document} is a graph consisting of three cycles Ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_i$$\end{document}, Cj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_j$$\end{document}, Ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_k$$\end{document} and s(≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\,(\ge 1)$$\end{document} paths Pb1+1,Pb2+1,…,Pbs+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{b_1+1}, P_{b_2+1},\ldots , P_{b_s+1}$$\end{document} intersecting in a single vertex that all meet in one vertex. A graph G is said to be determined by the spectrum of its Laplacian matrix (DLS, for short) if every graph with the same Laplacian spectrum is isomorphic to G. If s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}, then the peacock graph is called clover graph. In Wang and Wang (Linear Multilinear Algebra 63(12):2396–2405, 2015), it was proved that all clover graphs are DLS. In this paper, we generalize this result and show that all peacock graphs are DLS.
引用
收藏
页码:787 / 790
页数:3
相关论文
共 20 条
[1]  
Anderson WN(1985)Eigenvalues of the Laplacian of a graph Linear Multilinear Algebra 18 141-145
[2]  
Morley TD(2004)The Laplacian spectrum of a graph Comput Appl Math 48 715-724
[3]  
Das KC(1994)The Laplacian spectrum of graph II SIAM J Discrete Math 7 221-229
[4]  
Grone R(2013)Laplacian spectral characterization of 3-rose graphs Linear Algebra Appl 439 2914-2920
[5]  
Merris R(1998)A note on the Laplacian graph eigenvalues Linear Algebra Appl 258 33-35
[6]  
Liu FJ(2002)The characteristic polynomial of the Laplacian of graphs in (a, b)-linear cases Linear Algebra Appl 356 113-121
[7]  
Huang QX(2009)On a signless Laplacian spectral characterization of T-shape trees Linear Algebra Appl 431 1607-1615
[8]  
Merris R(2003)Which graphs are determined by their spectrum? Linear Algebra Appl 373 241-272
[9]  
Oliveira CS(2015)Laplacian spectral characterization of clover graphs Linear Multilinear Algebra 63 2396-2405
[10]  
de Abreu NMM(2015)The spectral characterization of wind-wheel graphs Indian J Pure Appl Math 46 613-631