Mellin transform and conformable fractional operator: applications

被引:0
作者
Ilie M. [1 ,2 ]
Biazar J. [2 ,3 ]
Ayati Z. [4 ]
机构
[1] Department of Mathematics, Guilan Science and Research Branch, Islamic Azad University, Rasht
[2] Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht
[3] Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 41335-1914, Rasht, Gilan
[4] Department of Engineering Sciences, Faculty of Technology and Engineering East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah
关键词
Conformable fractional operator; Heat equation; Mellin transform; New theorems; Wave equation;
D O I
10.1007/s40324-018-0171-3
中图分类号
学科分类号
摘要
A wide range of fractional differential equations in applied sciences can be solved by integral transformations. In the present work, first some new theorems related to the Mellin transform and the conformable fractional operator are established, and then a few conformable fractional equations such as wave and heat equations are solved through the use of results generated. © 2018, Sociedad Española de Matemática Aplicada.
引用
收藏
页码:203 / 215
页数:12
相关论文
共 25 条
  • [1] Abdeljawad T., On conformable fractional calculus, J. Comput. Appl. Math., 279, pp. 57-66, (2015)
  • [2] Butzer P.L., Jansche S., A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3, 4, pp. 325-376, (1997)
  • [3] Butzer P.L., Jansche S., Mellin transform theory and the role of its differential and integral operators, Proceedings of the 2Nd International Workshop in Transform Methods and Special Functions (Varna 96). Bulg. Acad. Sci., Sofa, pp. 63-83, (1998)
  • [4] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.G., Tables of integral transforms, 1, (1954)
  • [5] Flajolet P., Regnier M., Sedgewick R., Some uses of the Mellin integral transform in the analysis of algorithms, Combinatorial algorithms on words, pp. 241-254, (1985)
  • [6] Flajolet P., Gourdon X., Dumas P., Mellin transforms and asymptotics: harmonic sums, Theor. Comput. Sci., 144, 1-2, pp. 3-58, (1995)
  • [7] Ilie M., Biazar J., Ayati Z., General solution of Bernoulli and Riccati fractional differential equations based on conformable fractional derivative, Int. J. Appl. Math. Res., 6, 2, pp. 49-51, (2017)
  • [8] Ilie M., Biazar J., Ayati Z., Application of the Lie Symmetry Analysis for second-order fractional differential equations, Iran. J. Optim., 9, 2, pp. 79-83, (2017)
  • [9] Ilie M., Biazar J., Ayati Z., Analytical solutions for conformable fractional Bratu-type equations, Int. J. Appl. Math. Res., 7, 1, pp. 15-19, (2018)
  • [10] Ilie M., Biazar J., Ayati Z., The first integral method for solving some conformable fractional differential equations, Opt. Quantum Electron., 50, 2, (2018)