Sliding of self-similar sets

被引:0
作者
Li-feng XI
Huo-jun Ruan
Qiu-li Guo
机构
[1] Zhejiang Wanli University,Institute of Mathematics
[2] Zhejiang University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2007年 / 50卷
关键词
fractal; self-similar set; Lipschitz equivalence; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the Lipschitz equivalence of slidings of self-similar sets by graph-directed construction and martingale theory.
引用
收藏
页码:351 / 360
页数:9
相关论文
共 20 条
[1]  
Cooper D.(1988)On the shape of Cantor sets J Diff Geom 28 203-221
[2]  
Pignataro T.(1989)Classification of quasi-circles by Hausdorff dimension Nonlinearity 2 489-493
[3]  
Falconer K. J.(1992)On the Lipschitz equivalence of Cantor sets Mathematika 39 223-233
[4]  
Marsh D. T.(2006)Lipschitz equivalence of self-similar sets C R Acad Sci Paris Sér I Math (Comptes Rendus Mathematique) 342 191-196
[5]  
Falconer K. J.(2003)Relations among Whitney sets, self-similar arcs and quasi-arcs Israel J Math 136 251-267
[6]  
Marsh D. T.(2004)Lipschitz equivalence of self-conformal sets J London Math Soc 70 369-382
[7]  
Rao H.(2005)The multifractal spectrum of some Moran measures Sci China Ser A-Math 48 1097-1112
[8]  
Ruan H. J.(2006)Uniform perfectness of the attractor of bi-Lipschitz IFS Sci China Ser A-Math 49 433-438
[9]  
Xi L. F.(1998)A class of self-similar fractals with overlap structure Adv in Appl Math 20 50-72
[10]  
Wen Z. Y.(1988)Hausdorff dimension in graph directed constructions Trans Amer Math Soc 309 811-829