Pentavalent vertex-transitive diameter two graphs

被引:0
作者
Wei Jin
机构
[1] Jiangxi University of Finance and Economics,School of Statistics; Research Center of Applied Statistics
来源
Frontiers of Mathematics in China | 2017年 / 12卷
关键词
vertex-transitive graph; diameter; automorphism group; 05C25; 05E18; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
We classify the family of pentavalent vertex-transitive graphs Γ with diameter 2. Suppose that the automorphism group of Γ is transitive on the set of ordered distance 2 vertex pairs. Then we show that either Γ is distance-transitive or Γ is one of C8¯,K5◻K2,C5[K2],2C4¯,orK3◻K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline {{C_8}} ,{\kern 1pt} {K_5}\square {K_2},{\kern 1pt} {C_5}\left[ {{K_2}} \right],{\kern 1pt} \overline {2{C_4}} ,{\kern 1pt} or{\kern 1pt} {K_3}\square {K_4}$$\end{document}.
引用
收藏
页码:377 / 388
页数:11
相关论文
共 37 条
[1]  
Amarra C(2012)Quotient-complete arc-transitive graphs European J Combin 33 1857-1881
[2]  
Giudici M(2013)Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group Des Codes Cryptogr 68 127-139
[3]  
Praeger C E(1987)On weakly symmetric graphs of order twice a prime J Combin Theory Ser B 42 196-211
[4]  
Amarra C(2008)A classification of finite partial linear spaces with a rank 3 automorphism group of grid type European J Combin 29 268-272
[5]  
Giudici M(2011)On imprimitive rank 3 permutation groups J Lond Math Soc 84 649-669
[6]  
Praeger C E(2013)Local 2-geodesic transitivity and clique graphs J Combin Theory Ser A 120 500-508
[7]  
Cheng Y(2014)On normal 2-geodesic transitive Cayley graphs J Algebraic Combin 39 903-918
[8]  
Oxley J(1971)Rank 3 groups and strongly regular graphs SIAM-AMS Proc 4 141-159
[9]  
Devillers A(2004)Classifying arc-transitive circulants J Algebraic Combin 20 353-358
[10]  
Devillers A(2006)One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer Acta Math Sin (Engl Ser) 22 1305-1320