Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer

被引:0
|
作者
Yang K. [1 ]
Ma Y.-Q. [1 ,2 ]
机构
[1] National Laboratory of Solid State Microstructures, Nanjing University
[2] Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University
基金
中国国家自然科学基金;
关键词
D O I
10.1038/nnano.2010.141
中图分类号
学科分类号
摘要
Understanding how nanoparticles with different shapes interact with cell membranes is important in drug and gene delivery, but this interaction remains poorly studied. Using computer simulations, we investigate the physical translocation processes of nanoparticles with different shapes (for example, spheres, ellipsoids, rods, discs and pushpin-like particles) and volumes across a lipid bilayer. We find that the shape anisotropy and initial orientation of the particle are crucial to the nature of the interaction between the particle and lipid bilayer. The penetrating capability of a nanoparticle across a lipid bilayer is determined by the contact area between the particle and lipid bilayer, and the local curvature of the particle at the contact point. Particle volume affects translocation indirectly, and particle rotation can complicate the penetration process. Our results provide a practical guide to geometry considerations when designing nanoscale cargo carriers. © 2010 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:579 / 583
页数:4
相关论文
共 50 条
  • [21] Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity
    Wang, Shuo
    Guo, Hui
    Li, Yinfeng
    Li, Xuejin
    NANOSCALE, 2019, 11 (09) : 4025 - 4034
  • [22] Voltage- and calcium-dependent translocation of the CyaA toxin across a tethered lipid bilayer
    Veneziano, R.
    Rossi, C.
    Chenal, A.
    Devoisselle, J. -M.
    Ladant, D.
    Chopineau, J.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2013, 42 : S157 - S157
  • [23] Effects of induced tension and electrostatic interactions on the mechanisms of antimicrobial peptide translocation across lipid bilayer
    Gao, Lianghui
    Fang, Weihai
    SOFT MATTER, 2009, 5 (17) : 3312 - 3318
  • [24] THE TRANSLOCATION OF COBALT DICARBOLLIDE ANIONS ACROSS A LIPID BILAYER-MEMBRANE - THE EFFECT OF SOLUTION RESISTANCE
    ATWELL, RJ
    SRIDHARAN, R
    DELEVIE, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 1986, 97 (3-4): : 431 - 436
  • [25] Translocation of Proteins through a Distorted Lipid Bilayer
    Wu, Xudong
    Rapoport, Tom A.
    TRENDS IN CELL BIOLOGY, 2021, 31 (06) : 473 - 484
  • [26] Membrane fluidity and the surface properties of the lipid bilayer: ESR experiment and computer simulation
    Man, Dariusz
    Olchawa, Ryszard
    Kubica, Krystian
    JOURNAL OF LIPOSOME RESEARCH, 2010, 20 (03) : 211 - 218
  • [27] Melting of a DPPC lipid bilayer observed with atomic force microscopy and computer simulation
    Yarrow, F.
    Vlugt, T. J. H.
    van der Eerden, J. P. J. M.
    Snel, M. M. E.
    JOURNAL OF CRYSTAL GROWTH, 2005, 275 (1-2) : E1417 - E1421
  • [28] A COMPUTER-SIMULATION STUDY OF PROBE MOLECULE BEHAVIOR IN LIPID BILAYER SYSTEMS
    VANDERHEIDE, UA
    LEVINE, YK
    MOLECULAR PHYSICS, 1994, 83 (06) : 1251 - 1264
  • [29] Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer
    Guo, Yachong
    Terazzi, Emmanuel
    Seemann, Ralf
    Fleury, Jean Baptiste
    Baulin, Vladimir A.
    SCIENCE ADVANCES, 2016, 2 (11):
  • [30] Molecular Simulation Studies on the Interactions of Bilirubin at Different States with a Lipid Bilayer
    Ni, Song-Di
    Chen, Ya-Li
    Chen, Yuan-Qiang
    Zhou, Kun
    Ding, Hong-Ming
    LANGMUIR, 2021, 37 (40) : 11707 - 11715