Initial Stage of the Finite-Amplitude Cauchy–Poisson Problem

被引:0
作者
Peder A. Tyvand
机构
[1] Norwegian University of Life Sciences,Faculty of Mathematical Sciences and Technology
来源
Water Waves | 2020年 / 2卷
关键词
Cauchy–Poisson problem; Free surface; Gravitational flow; Initial value problem;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear Cauchy–Poisson problem for an incompressible inviscid fluid to start flowing under gravity is investigated analytically. The general nonlinear initial/boundary-value problem is formulated, including both an initial surface deflection and an initial velocity generated by a pressure impulse on the surface. Two subproblems are: (1) a finite-amplitude surface deflection released from rest; (2) the fluid is forced into motion by a pressure impulse on the initially horizontal surface. Solutions for these two subproblems are given to the leading order. One exact solution is given for the fully nonlinear initial-value problem, where a surface pressure impulse is applied on a surface with finite initial deflection. The concept of the highest non-breaking wave is illustrated by dipole acceleration fields at a state of gravitational release from rest. This is done for two phenomena: run-up of a non-breaking solitary wave on a sloping beach, and free nonlinear sloshing in an open container.
引用
收藏
页码:145 / 168
页数:23
相关论文
共 22 条
[1]  
Alazard T(2012)On the Cauchy problem for water gravity waves Invent. Math. 198 71-163
[2]  
Burq N(1827)Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie Mem. Prés. divers Savants Acad. R. Sci. Inst. 1 3-123
[3]  
Zuily C(2002)Liquid impact, kinetic energy loss and compressibility: Lagrangian, Eulerian and acoustic viewpoints J. Eng. Math. 44 259-276
[4]  
Cauchy AL(1965)Stream function representation of nonlinear ocean waves J. Geophys. Res. 70 4561-4572
[5]  
Cooker MJ(1976)The deformation of steep surface waves on water—I. A numerical method of computation Proc. Roy. Soc. A 350 1-26
[6]  
Dean RG(2001)On the breaking of standing waves by falling jets Phys. Fluids 13 1652-1659
[7]  
Longuet-Higgins MS(1968)The Cauchy–Poisson problem for a viscous liquid J. Fluid Mech. 34 359-370
[8]  
Cokelet ED(1983)Run-up of solitary waves J. Fluid Mech. 135 283-299
[9]  
Longuet-Higgins MS(1952)The dispersion, under gravity, of a column of fluid supported on a rigid horizontal plane Philos. Trans. R. Soc. Lond. A 244 285-311
[10]  
Dommermuth DG(1818)Mémoire sur la théorie des ondes Mem. Prés. divers Savants Acad. R. Sci. Inst. 2 70-186