The Quantum Harmonic Oscillator in the ESR Model

被引:0
|
作者
Sandro Sozzo
机构
[1] Brussels Free University (VUB),Center Leo Apostel (CLEA)
[2] University of Salento,Department of Mathematics and Physics
来源
Foundations of Physics | 2013年 / 43卷
关键词
Quantum mechanics; Harmonic oscillator; State transformations; ESR model;
D O I
暂无
中图分类号
学科分类号
摘要
The ESR model proposes a new theoretical perspective which incorporates the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in a noncontextual framework, reinterpreting quantum probabilities as conditional on detection instead of absolute. We have provided in some previous papers mathematical representations of the physical entities introduced by the ESR model, namely observables, properties, pure states, proper and improper mixtures, together with rules for calculating conditional and overall probabilities, and for describing transformations of states induced by measurements. We study in this paper the relevant physical case of the quantum harmonic oscillator in our mathematical formalism. We reinterpret the standard quantum rules for probabilities, provide new expressions for absolute probabilities, and show how the standard state transformations must be modified according to the ESR model.
引用
收藏
页码:792 / 804
页数:12
相关论文
共 50 条
  • [31] The principal measure of a quantum harmonic oscillator
    Wu, Xinxing
    Zhu, Peiyong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (50)
  • [32] Quantum dynamics of the damped harmonic oscillator
    Philbin, T. G.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [33] Quantum Harmonic Oscillator Systems with Disorder
    Bruno Nachtergaele
    Robert Sims
    Günter Stolz
    Journal of Statistical Physics, 2012, 149 : 969 - 1012
  • [34] CONSTRAINED QUANTUM MECHANICAL HARMONIC OSCILLATOR
    DEAN, P
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 277 - &
  • [35] Quadratic open quantum harmonic oscillator
    Ameur Dhahri
    Franco Fagnola
    Hyun Jae Yoo
    Letters in Mathematical Physics, 2020, 110 : 1759 - 1782
  • [36] Quantum decoherence of the damped harmonic oscillator
    Isar, A.
    OPTICS AND SPECTROSCOPY, 2007, 103 (02) : 252 - 257
  • [37] Relativistic Generalizations of the Quantum Harmonic Oscillator
    Poszwa, A.
    ACTA PHYSICA POLONICA A, 2014, 126 (06) : 1226 - 1234
  • [38] LINEAR CHAOS IN THE QUANTUM HARMONIC OSCILLATOR
    WU Xinxing
    ZHU Peiyong
    Journal of Systems Science & Complexity, 2014, 27 (04) : 694 - 700
  • [39] Quantum phases for a generalized harmonic oscillator
    Bracken, Paul
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2008, 6 (01): : 135 - 140
  • [40] On the moment of inertia of a quantum harmonic oscillator
    Khamzin, A. A.
    Sitdikov, A. S.
    Nikitin, A. S.
    Roganov, D. A.
    PHYSICS OF ATOMIC NUCLEI, 2013, 76 (04) : 457 - 463