The Quantum Harmonic Oscillator in the ESR Model

被引:0
|
作者
Sandro Sozzo
机构
[1] Brussels Free University (VUB),Center Leo Apostel (CLEA)
[2] University of Salento,Department of Mathematics and Physics
来源
Foundations of Physics | 2013年 / 43卷
关键词
Quantum mechanics; Harmonic oscillator; State transformations; ESR model;
D O I
暂无
中图分类号
学科分类号
摘要
The ESR model proposes a new theoretical perspective which incorporates the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in a noncontextual framework, reinterpreting quantum probabilities as conditional on detection instead of absolute. We have provided in some previous papers mathematical representations of the physical entities introduced by the ESR model, namely observables, properties, pure states, proper and improper mixtures, together with rules for calculating conditional and overall probabilities, and for describing transformations of states induced by measurements. We study in this paper the relevant physical case of the quantum harmonic oscillator in our mathematical formalism. We reinterpret the standard quantum rules for probabilities, provide new expressions for absolute probabilities, and show how the standard state transformations must be modified according to the ESR model.
引用
收藏
页码:792 / 804
页数:12
相关论文
共 50 条
  • [21] Discrete Quantum Harmonic Oscillator
    Dobrogowska, Alina
    Fernandez C, David J.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [22] Quantum Harmonic Oscillator Sonification
    Saranti, Anna
    Eckel, Gerhard
    Pirro, David
    AUDITORY DISPLAY, 2010, 5954 : 184 - 201
  • [23] Quantum harmonic oscillator model for simulation of intercity population mobility
    Hu, Xu
    Qian, Lingxin
    Niu, Xiaoyu
    Gao, Ming
    Luo, Wen
    Yuan, Linwang
    Yu, Zhaoyuan
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2024, 34 (03) : 459 - 482
  • [24] Anomalous Dissipative Quantum Harmonic Oscillator
    BAI Zhan-Wu Department of Mathematics and Physics
    Communications in Theoretical Physics, 2008, 49 (01) : 137 - 142
  • [25] Linear chaos in the quantum harmonic oscillator
    Xinxing Wu
    Peiyong Zhu
    Journal of Systems Science and Complexity, 2014, 27 : 694 - 700
  • [26] Quantum dynamics of the classical harmonic oscillator
    Giannakis, Dimitrios
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (04)
  • [27] Elliptic eigenstates for the quantum harmonic oscillator
    Pollet, J
    Meplan, O
    Gignoux, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24): : 7287 - 7297
  • [28] Quantum decoherence of the damped harmonic oscillator
    A. Isar
    Optics and Spectroscopy, 2007, 103 : 252 - 257
  • [29] A NOTE ON THE QUANTUM RULE OF THE HARMONIC OSCILLATOR
    YANG, LM
    PHYSICAL REVIEW, 1951, 84 (04): : 788 - 790
  • [30] Quadratic open quantum harmonic oscillator
    Dhahri, Ameur
    Fagnola, Franco
    Yoo, Hyun Jae
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (07) : 1759 - 1782