The Quantum Harmonic Oscillator in the ESR Model

被引:0
|
作者
Sandro Sozzo
机构
[1] Brussels Free University (VUB),Center Leo Apostel (CLEA)
[2] University of Salento,Department of Mathematics and Physics
来源
Foundations of Physics | 2013年 / 43卷
关键词
Quantum mechanics; Harmonic oscillator; State transformations; ESR model;
D O I
暂无
中图分类号
学科分类号
摘要
The ESR model proposes a new theoretical perspective which incorporates the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in a noncontextual framework, reinterpreting quantum probabilities as conditional on detection instead of absolute. We have provided in some previous papers mathematical representations of the physical entities introduced by the ESR model, namely observables, properties, pure states, proper and improper mixtures, together with rules for calculating conditional and overall probabilities, and for describing transformations of states induced by measurements. We study in this paper the relevant physical case of the quantum harmonic oscillator in our mathematical formalism. We reinterpret the standard quantum rules for probabilities, provide new expressions for absolute probabilities, and show how the standard state transformations must be modified according to the ESR model.
引用
收藏
页码:792 / 804
页数:12
相关论文
共 50 条
  • [11] KAM for the Quantum Harmonic Oscillator
    Benoît Grébert
    Laurent Thomann
    Communications in Mathematical Physics, 2011, 307 : 383 - 427
  • [12] Quantum harmonic oscillator model for simulation of intercity population mobility
    HU Xu
    QIAN Lingxin
    NIU Xiaoyu
    GAO Ming
    LUO Wen
    YUAN Linwang
    YU Zhaoyuan
    Journal of Geographical Sciences, 2024, 34 (03) : 459 - 482
  • [13] Subnormality in the quantum harmonic oscillator
    Szafraniec, FH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) : 323 - 334
  • [14] The bicomplex quantum harmonic oscillator
    Lavoie, R. Gervais
    Marchildon, L.
    Rochon, D.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (10): : 1173 - 1192
  • [15] Duality in the quantum harmonic oscillator
    Szafraniec, FH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10487 - 10492
  • [16] QUANTUM DISSIPATIVE HARMONIC OSCILLATOR
    Imranov, Fariz B.
    Jafarova, Aynura M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2013, 39 (47): : 157 - 164
  • [17] KAM for the Quantum Harmonic Oscillator
    Grebert, Benoit
    Thomann, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 383 - 427
  • [18] One-dimensional model of a quantum nonlinear harmonic oscillator
    Cariñena, JF
    Rañada, MF
    Santander, M
    REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) : 285 - 293
  • [19] Quantum harmonic oscillator model for simulation of intercity population mobility
    Xu Hu
    Lingxin Qian
    Xiaoyu Niu
    Ming Gao
    Wen Luo
    Linwang Yuan
    Zhaoyuan Yu
    Journal of Geographical Sciences, 2024, 34 : 459 - 482
  • [20] EXACTLY-SOLVABLE CONFINEMENT MODEL OF THE QUANTUM HARMONIC OSCILLATOR
    Jafarov, E. I.
    Nagiyev, S. M.
    MODERN TRENDS IN PHYSICS, 2019, : 245 - 248