Abelian coverings of finite general linear groups and an application to their non-commuting graphs

被引:0
作者
Azizollah Azad
Mohammad A. Iranmanesh
Cheryl E. Praeger
Pablo Spiga
机构
[1] Arak University,Department of Mathematics, Faculty of Sciences
[2] Yazd University,Department of Mathematics
[3] The University of Western Australia,School of Mathematics and Statistics
来源
Journal of Algebraic Combinatorics | 2011年 / 34卷
关键词
General linear group; Cyclic matrix; Non-commuting subsets of finite groups; Non-commuting graph;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce and study a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}_{n}(q)$\end{document} of abelian subgroups of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm GL}_{n}(q)$\end{document} covering every element of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm GL}_{n}(q)$\end{document}. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}_{n}(q)$\end{document} contains all the centralizers of cyclic matrices and equality holds if q>n. For q>2, we obtain an infinite product expression for a probabilistic generating function for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|\mathcal{A}_{n}(q)|$\end{document}. This leads to upper and lower bounds which show in particular that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1q^{-n}\leq \frac{|\mathcal{A}_n(q)|}{|\mathrm{GL}_n(q)|}\leq c_2q^{-n}$$\end{document} for explicit positive constants c1,c2. We also prove that similar upper and lower bounds hold for q=2.
引用
收藏
页码:683 / 710
页数:27
相关论文
共 20 条
  • [1] Abdollahi A.(2006)Non-commuting graph of a group J. Algebra 298 468-492
  • [2] Akbari A.(2009)Maximal sets of pairwise noncommuting elements of finite three-dimensional general linear groups Bull. Aust. Math. Soc. 80 91-104
  • [3] Maimani H.R.(1983)Some applications of graph theory to finite groups Discrete Math. 44 31-43
  • [4] Azad A.(1988)Minimal covers of J. Comb. Theory, Ser. A 49 294-307
  • [5] Praeger C.E.(2005) by abelian subgroups and maximal subsets of pairwise noncommuting elements J. Group Theory 8 189-194
  • [6] Bertram E.A.(1971)On non-commuting sets in an extra special Can. J. Math. 23 426-438
  • [7] Brown R.(1999)-group J. Group Theory 2 251-289
  • [8] Chin A.M.Y.(1978)Maximal abelian subgroups of the symmetric groups Can. J. Math. 30 933-945
  • [9] Dixon J.D.(1976)Cycle indices for the finite classical groups J. Aust. Math. Soc. A 21 467-472
  • [10] Fulman J.(1995)Covering of groups by abelian subgroups J. Lond. Math. Soc. 52 263-284