Lie symmetries and exact solutions of nonlinear equations of heat conductivity with convection term

被引:0
作者
M. I. Serov
R. M. Cherniha
机构
[1] Poltava Technical University,Institute of Mathematics
[2] Ukrainian Academy of Sciences,undefined
关键词
Exact Solution; Heat Conductivity; Nonlinear Equation; Convection Term; Burger Equation;
D O I
10.1007/BF02487349
中图分类号
学科分类号
摘要
The Lie symmetries of nonlinear diffusion equations with convection term are completely described. The Lie ansatzes and exact solutions of a certain nonlinear generalization of the Murray equation are constructed. An example of the family of non-Lie solutions of the Murray equation is given.
引用
收藏
页码:1423 / 1433
页数:10
相关论文
共 19 条
[1]  
Gilding B. H.(1996)The characterization of reaction-convection-diffusion processes by traveling waves J. Different. Equat. 124 27-79
[2]  
Kersberg R.(1982)On invariant solutions of nonlinear heat conduction with a source USSR Comput. Math. Math. Phys. 22 115-122
[3]  
Dorodnitsyn V. A.(1993)Conditional invariance and exact solutions of the nonlinear equation of heat conductivity Dokl. Akad. Nauk Ukr. SSR, Ser. A 4 23-27
[4]  
Fushchich V. I.(1937)The wave of advance of advantageous genes Ann. Eugenics 7 353-369
[5]  
Serov M. I.(1965)Group classification of solutions of the Hopf equations Zh. Prikl. Mekh. Tekh. Fiz. 6 105-106
[6]  
Tulupova L.(1985)The Galilean relativistic principle and nonlinear partial differential equations J. Phys. A., Math. Gen. 18 3491-3503
[7]  
Fisher R. A.(1994)Galilei-invariant systems of nonlinear equations of the Hamilton-Jacobi type and of reactiondiffusion Dokl. Akad. Nauk Ukr. SSR, Ser. A 3 31-38
[8]  
Katkov V. L.(1995)Galilei-invariant systems of nonlinear systems of evolution equations J. Phys. A., Math. Gen. 25 5569-5579
[9]  
Fushchych W.(1989)Galilei-invariant nonlinear equations of the Schrödinger type and their exact solutions Ukr. Mat. Zh. 12 1687-1694
[10]  
Cherniha R.(1985)Symmetry and exact solutions of equations of heat and mass transfer in thermonuclear plasma Dokl. Akad. Nauk Ukr. SSR, Ser. A 4 17-21