The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant

被引:1
作者
Jared Speck
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Selecta Mathematica | 2012年 / 18卷
关键词
Accelerated expansion; Cosmological constant; Energy current; Geodesically complete; Wave coordinates; Primary 35A01; Secondary 35L99; 35Q31; 35Q76; 83C05; 83F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study small perturbations of the family of Friedmann–Lemaître–Robertson–Walker cosmological background solutions to the 1 + 3 dimensional Euler–Einstein system with a positive cosmological constant. These background solutions describe an initially uniform quiet fluid of positive energy density evolving in a spacetime undergoing accelerated expansion. Our nonlinear analysis shows that under the equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p = c^2_s \rho}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < c^2_s < 1/3}$$\end{document} , the background solutions are globally future-stable. In particular, we prove that the perturbed spacetime solutions, which have the topological structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[0,\infty) \times \mathbb{T}^3}$$\end{document} , are future-causally geodesically complete. These results are extensions of previous results derived by the author in a collaboration with I. Rodnianski, in which the fluid was assumed to be irrotational. Our novel analysis of a fluid with non-zero vorticity is based on the use of suitably defined energy currents.
引用
收藏
页码:633 / 715
页数:82
相关论文
共 28 条
[1]  
Anderson M.T.(2005)Existence and stability of even-dimensional asymptotically de Sitter spaces Ann. Henri Poincaré 6 801-820
[2]  
Brauer U.(1994)The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models Class. Quantum Gravity 11 2283-2296
[3]  
Rendall A.(1969)Global aspects of the Cauchy problem in general relativity Commun. Math. Phys. 14 329-335
[4]  
Reula O.(1952)Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires Acta Math. 88 141-225
[5]  
Choquet-Bruhat Y.(2010)Mathematical general relativity: a sampler Bull. Am. Math. Soc. (N.S.) 47 567-638
[6]  
Geroch R.(1917)Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 142–152 235-237
[7]  
(Choquet)-Bruhat Yvonne F.(1986)On the existence of Commun. Math. Phys. 107 587-609
[8]  
Chruściel P.T.(1991)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure J. Differ. Geom. 34 275-345
[9]  
Galloway G.J.(1954)On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations Commun. Pure Appl. Math. 7 345-392
[10]  
Pollack D.(1970)Symmetric hyperbolic linear differential equations J. Math. Phys. 11 437-449